Campus Salvador Dissertações
Use este identificador para citar ou linkar para este item: https://repositorio.ifba.edu.br/jspui/handle/123456789/458
Registro completo de metadados
Campo DCValorIdioma
dc.creatorCarvalho, Cristiane Oliveira de-
dc.date.accessioned2023-09-29T11:26:28Z-
dc.date.available2023-07-06-
dc.date.available2023-09-29T11:26:28Z-
dc.date.issued2023-05-19-
dc.identifier.citationCarvalho, Cristiane Oliveira de. Síntese e caracterização de compósitos constituídos por ligas de titânio e hidroxiapatita obtida a partir de resíduos de peixes. Dissertação (Programa de Pós-Graduação em Engenharia de Materiais) -- Instituto Federal da Bahia, Salvador, 2023.pt_BR
dc.identifier.urihttps://repositorio.ifba.edu.br/jspui/handle/123456789/458-
dc.description.abstractThe search for new materials that meet biocompatibility requirements is current and growing, as the aging of the population has required an increase in applications in the treatment of diseases linked to the mobility of the human body. The focus of research on these materials has been directed to improving the mechanical and biocompatible properties, so that adverse reactions and rejections can be avoided. In this sense, the present study was designed for the production of composites made of titanium alloys (Ti) and hydroxyapatite [Ca10(PO4)6(OH)2, HA]. Powders of titanium-silicon-boron (TiSiB) and titanium-niobium (TiNb) alloys were obtained by high-energy grinding. Hydroxyapatite (HA) was extracted from fish scales and bones by calcination at 900°C and sent to high-energy milling in order to obtain it in powder form. The samples were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray fluorescence (FRX), X-ray diffraction (XRD), Fourier transform fluorescence spectroscopy (FT-IR). In the results of this research, it was possible to obtain hydroxyapatite (HA) from the scales and bones of calcined and ground fish. Alloys of titanium-niobium systems (TiNb) and alloys of titanium-silicon-boron systems (TiSiB) were obtained. In addition, with porosity, which was already expected, it was also possible to obtain the composite of hydroxyapatite (HA) with the elements titanium-niobium (TiNb) and titanium- silicon-boron (TiSiB).pt_BR
dc.languageporpt_BR
dc.publisherInstituto Federal de Educação, Ciência e Tecnologia da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectResíduos de peixespt_BR
dc.subjectHidroxiapatitapt_BR
dc.subjectMoagem de alta energiapt_BR
dc.subjectLigas de titâniopt_BR
dc.subjectBiomaterialpt_BR
dc.subjectFish wastept_BR
dc.subjectHydroxyapatitept_BR
dc.subjectHigh energy grindingpt_BR
dc.subjectTitanium alloyspt_BR
dc.titleSíntese e caracterização de compósitos constituídos por ligas de titânio e hidroxiapatita obtida a partir de resíduos de peixespt_BR
dc.typeDissertaçãopt_BR
dc.creator.ID7858101602671143pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/7858101602671143pt_BR
dc.contributor.advisor1Coelho, Rodrigo Estevam-
dc.contributor.advisor1ID7405345080248943pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7405345080248943pt_BR
dc.contributor.referee1Coelho, Rodrigo Estevam-
dc.contributor.referee2Santos, Vanessa Mendes-
dc.contributor.referee2ID0635781789053561pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0635781789053561pt_BR
dc.contributor.referee3Lima, Pedro Cunha de-
dc.contributor.referee3ID7461452130461804pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/7461452130461804pt_BR
dc.contributor.referee4Santana, Victor Mancir da Silva-
dc.contributor.referee4ID7116365856173773pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/7116365856173773pt_BR
dc.description.resumoA busca por novos materiais que satisfaçam requisitos de biocompatibilidade é atual e crescente, pois o envelhecimento da população tem exigido um aumento das aplicações no tratamento de doenças ligadas a mobilidade do corpo humano. O foco das pesquisas destes materiais tem sido direcionado a melhorar as propriedades mecânicas e biocompatíveis, de forma que as reações e rejeições adversas possam ser evitadas. Nesse sentido, o presente estudo foi delineado para produção de compósitos constituídos de ligas de titânio (Ti) e hidroxiapatita [Ca10(PO4)6(OH)2, HA]. Os pós das ligas dos sistemas titânio-silício-boro (TiSiB) e titânio- nióbio (TiNb) foram obtidos por moagem de alta energia. A hidroxiapatita (HA) foi extraída das escamas e ossos de peixes por calcinação a 900°C e encaminhada para moagem de alta energia a fim de obtê-la em pó. As amostras foram caracterizadas por microscopia eletrônica de varredura (MEV), espectroscopia por energia dispersiva (EDS), fluorescência de raios-X (FRX), difração de raios-X (DRX), espectroscopia de fluorescência com transformada de Fourier (FT-IR). Nos resultados desta pesquisa foi possível a obtenção da hidroxiapatita (HA), a partir das escamas e ossos de peixes calcinados e moídos. Foram obtidas as ligas dos sistemas titânio-nióbio (TiNb) e ligas dos sistemas titânio-silício-boro (TiSiB). Além disto, com porosidade, a qual já era esperada, foi conseguido também obter o compósito da hidroxiapatita (HA) com os elementos titânio-nióbio (TiNb) e titânio-silício-boro (TiSiB).pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentPrograma de Pós-Graduação em Engenharia de Materiais(PPGEM)pt_BR
dc.publisher.programMestrado Profissional em Engenharia de Materiais (PPGEM)pt_BR
dc.publisher.initialsIFBApt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICApt_BR
dc.relation.referencesAGBEBOH, N. I., OLADELE, I.O; DARAMOLA, O.O.; ADEDIRAN, A.A.;OLASUKANMI, O.O.; TANIMOLA, M.O. Environmentally sustainable processes for the synthesis of hydroxyapatite. Helyon, 2020. AHMAD, F.N.; HUSSAIN, Z. Morphology and mechanical properties fabricated from Ti, Nb and HA by powder metallurgy method. IOP Conf. Series: Journal of Physics: Conf. Series 1082, 2018.doi:10.1088/1742-6596/1082/1/012083. AJMAL, S.; HASHMIL, F.A; IMRAN, I. Recent progress in development and applications of biomaterials. Materialstoday, Volume 62, Part 1,2022. Pages 385-391. AYDOĞMUŞ,T.; KAREEM, D.; PALANI, H.; FEVZIKELEN, F. Processing of porous β-type Ti74Nb26 alloys for biomedical applications. Journal of Alloys and Compounds,V.872, 2021. ARDEBILI, H; PECHT, M. G. Defect and Failure Analysis Techniques for Encapsulated Microelectronics. ARDEBILI, H; PECHT, M. G. Encapsulation Technologies for Electronic Applications. William Andrew, 2009, Pages 287-350. AROKIASAMY, P. MUSTAFA Al, M; ABDULLAH, B; RAHIM, Z, A; LUHAR, S.; SANDU, V; JAMIL, N.H; Nabiałekf, MARCIN. Synthesis methods of hydroxyapatite from natural sources: A review. Ceramics International, V.48, Issue 11, 1 June 2022, Pages 14959- 14979. ASM HANDBOOK, Vol. 03. Alloy Phase Diagrams. ASM International The Materials Information Company, 1992. BABAEI, K; FATTAH-ALHOSSEINI, A. CHAHARMAHALI, R. A review on plasma electrolytic oxidation (PEO) of niobium: Mechanism, properties and applications. Surfaces and Interfaces, 2020. BATISTA, T. S. A.; BATISTA-FILHO; J.B. Calcita, Hidroxiapatita e B-Fosfato Tricálcio como absorvedores do ultravioleta [ recurso eletrônico ]– 1. ed. - Aracaju : IFS, 2016. BHAT, S.; UTHAPPA, U.T.; ALTALHI, T.; JUNG, H.Y.; KURKURI, M.D.Functionalized Porous Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review. ACS Biomater. Sci. Eng. 2022, 8, 10, 4039–4076. BIESIEKIERSKI, A; MUNIR, K; LI, Y.; WEN, C. Material selection for medical devices. In: WEN. C. Metallic Biomaterials Processing and Medical Device Manufacturing. Woodhead Publishing, 2020. BOSE, S.; BANERJEE, D.; BANDYOPADHYAY, A. Introduction to Biomaterials and Devices for Bone Disorders. In: BOSE S.; BANDYOPADHYAY; A. Materials and devices for bone disorders. Academic Press, 2017. BOVAND, D.; YOUSEFPOUR, M.; RASOULI, S.; BAGHERIFARD, S.; BOVAND, N.; TAMAYOL, A. Characterization of Ti-HA composite fabricated by mechanical alloying. Materials & Design, V., 2015, Pages 447-453. BRAGA, Francisco José Correa. Materiais aplicados à MEDICINA E ODONTOLOGIA: Físico-Química e Resposta Biológica. São Paulo: Artliber Editora, 2015. BURR, D.B; AKKUS, O. Bone Morphology and Organization. In: BURR. D. B; ALLLEN, M.R. Basic and Applied Bone Biology. Academic Press, 2019. CAMPOS-QUIRÓS, A. CUBERO-SESÍN, M; EDALATI, K. Synthesis of nanostructured biomaterials by high-pressure torsion: Effect of niobium content on microstructure and mechanical properties of Ti-Nb alloys. Materials Science and Engineering: A, 2020. CAMPEBELL, J.; BURKIT, S.; DONG, N.; ZAVALETA, C. Nanopartice characterzation techniques. CHUNG, E. J.; LEON, L.; RINALDI, C. Nanoparticles for Biomedical Applications Fundamental: Concepts, Biological Interactions and Clinical Applications Micro and Nano Technologies, 2020, P. 129-144. CANDIOTO, K. C. G. Solidificação rápida e avaliação de estabilidade de fases de ligas Ti-Si-B. Tese (Doutor em Ciências) - Universidade de São Paulo, Lorena – SP, 2009. CAVALCANTE, L.A. Desenvolvimento de biocerâmica porosa a partir da hidroxiapatita extraída de escamas de pirarucu (Arapaima gigas). Dissertação (Mestrado em Ciência e Engenharia de Materiais) - Universidade Federal do Amazonas, Manaus, 2019. CHAI, Y.; NISHIKAWA, M.; TAGAYA, M. Preparation of gold/hydroxyapatite hybrids using natural fish scale template and their effective albumin interactions. Advanced Powder Technology, V 29, n,5, p, 1198-1203, 2018. CHAI, Y.; TAGAYA, M. Simple preparation of hydroxyapatite nanostructures derived from fish scales. Materials Letters 222 (2018) 156–159 CHEN, Y.; FRITH, J.E.; DEHGHAN-MANSAHADI, A.; ATTAR, H.; KENT, D.; SORO, N.D; BERMINGHAM, M.J; DARGUSCH. Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, V. 75, 2017, Pages 169-174. CHEN, Y.; FRITH, J.E.; KENT, D.; BERMINGHAM, M; DEHGHAN-MANSAHADI, A.; DARGUSCH; M. Manufacturing of biocompatible porous titanium scaffolds using a novel spherical sugar pellet space holder. Materials Letters, V. 195, 2017, Pages 92-95. CHEN, Y.; FRITH, J.E.; KENT, D.; BERMINGHAM, M; DEHGHAN-MANSAHADI, A.; WANG, G.; WEN, C.; DARGUSCH, M. Manufacturing of graded titanium scaffolds using a novel space holder technique. Bioactive Materials, V. 2, Issue 4, December 2017, Pages 248-252. COELHO, R.E.Obtenção das Ligas Al-Fe-X-Si (X=V ou Nb) por moagem de alta energia e extrusão a quente. Tese (Doutorado em Ciências na Área de Tecnologia Nuclear-Materiais. Instituto de Pesquisas Energéticas e Nucleares/Univerisdade de São Paulo, São Paulo, 2001. DEB, P; BARUA, E; DEOGHARE, A.B; LALA, S.D. Development of bone scaffold using Puntius conchonius fish scale derived hydroxyapatite: Physico-mechanical and bioactivity evaluations. V. 45, Issue 8, 1 June 2019 a), Pages 10004-10012. DEB, P; BARUA, E; LALA, S.D; DEOGHARE, A.B. Synthesis of hydroxyapatite from Labeo rohita fish scale for biomedical application. Materials Today: Proceedings. V.15,Parte 2, 2019 b), pages 277–283. EL-AZAZY, M.; EL-SHAFIE, A. AL-SAAD, K. Infrared Spectrocopy- Principles and Applications. Intechop, 2023. EL-ESKANDARANY, S. Mechanical Alloying. Energy Storage, Protective Coatings, and Medical applications. William Andrew, 2020. FAN, X. Preparation and performance of hydroxyapatite/Ti porous biocomposite scaffolds. Ceramics International, 2019, V. 45, Pages 16466-16469. FAO. 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. https://doi.org/10.4060/ca9229en FARRAHNOOR, A; ZUNHAILAWAIT, H. Effects of hydroxyapatite addition on the bioactivity of Ti-Nb alloy matrix composite fabricated via powder metallurgy process. Materials today Communications, 2021, V.27. FINEKI, L.; ANNAN, K; MUTOMBO, K; MACHAKA, R. Effect of Nb content on the microstructure and mechanical properties of binary Ti-Nb alloys. Materialstoday:proceedings, V. 38, 2021. FIORI, B.O; HOLLAND, T; FERREIRA, M; SOUSA, L.L; MARIANO, N.A; NUNES, C.A.FILGUEIRA, M; RAMOS, A.S. Spark plasma sintering of Ti6Si2B-based Ti-Si-B alloys and their corrosion resistance in artificial saliva and SBF media. Materials Today Communcations, 2020. FERNANDES, B.B.; RAMOS, A.S.; MOURA NETO, C.; MELO; F.C.L; FERNANDES, P.B. Estudo Das Ligas Ti-18Si-6B E Ti-7,5Si-22,5B confeccionadas por moagem de alta energia e prensagem a quente. Tecnologia em Metalurgia e Materiais, São Paulo, v.4, n.2, p. 56-62, 2007. FERRI, O.M; EBEL, T.; BORMANN, R. The Influence of a Small Boron Addition on the Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Metal Injection Moulding. Advaced Engineering Materials, 2011. FUJII, T.; MURAKAMI, R.; KOBAYASHI, N.; TOHGI, K.; SHIMAMURA, Y. Uniform porous and functionally graded porous titanium fabricated via space holder technique with spark plasma sintering for biomedical applications. Advanced Powder Technology,V. 33, Issue 6, 2022. GIBSON, I. R. Natural and Synthetic Hydroxyapatites. In: WAGNER, W.R; SAKIYAMA-ELBERT, S.E; ZHANG, G. YASZEMSKI, M.J. Biomaterials Science: Na Introduction to Material in Medicine. Academic Press, 2020. GOHARIAN, A.; ABDULLAH, M. R. Bioinert metals (stainless steel, titanium, cobalt chromium). Trauma Plating Systems Biomechanical, Material, Biological, and Clinical Aspects, 2017, Pages 115-142. GRANITO, R.N.; RENNO, A.C.M.; YAMAMURA, H.; ALMEIDA, M.C.; RUIZ, P.L.M; RIBEIRO, D.A. Hydroxyapatite from Fish for Bone Tissue Engineering: A Promising Approach. Int J Mol Cell Med., 2018. doi: 10.22088/IJMCM.BUMS.7.2.80 GROOVER, M. P. Introdução aos processos de fabricação. Rio de Janeiro:LTC, 2021. GUBBI, P; WOJTISEK, T. Overview of metals and applications.In: FROES, F.H; QIAN, M. Titanium in Medical and dental applications. Woodhead Publishing, 2018. HAWANA, T. Overview of metals and Applications. In: NIINOMI, M. Metals for biomedical devices. Woodhead Publishing, 2019. HERNÁNDEZ-RUIZ,K.L.;LÓPEZ-CERVANTES, J.; SÁNCHEZ-MACHADO, D. I.; MARTÍNEZ-MACIAS, M.R.; CORREA-MURRIETA, M.A; SANCHES-SILVA,A. Hydroxyapatite recovery from fish byproducts for biomedical applications. Sustainable Chemistry and Pharmacy, V. 28, September 2022. HUANG, J. Design and Development of Ceramics and Glasses. VISHWAKARMA; A.; KARP, J. M. Biology and Engineering of Stem Cell Niches. Academic Press, 2017. HUANG, X. GAO, Y; LIU, Y.; Li, Q.; XIAO, P. LI, B. WANG, Y; QIN, Y.; ZHAO, S. New insight on mechanisms of Si element improving the oxidation resistance of titanium matrix composites. Corrosion Science, V.191, 2021. JIAN, X.; YONGNING, L.; GUIBAO, Q.; JINMING, L. The application of model equation method in preparation of titanium foams. Journal of Materials Research and Technology, V. 13, 2021, Pages 121-127 KARRE, R.; KODLI, B.K.; RAJENDRAN, A.; NIVEDHITA, J.; PATTANAYA, K.; AMEYAMA, K.; DEY, S.R. Comparative study on Ti-Nb binary alloys fabricated through spark plasma sintering and conventional P/M routes for biomedical application. Materials Science and Engineering: C, 2019. KASUGA, T. Coatings for metallic biomaterials. In: NIINOMI, M. Metals for Biomedical Devices. Woodhead Publishing, 2019, P. 369-382. KATO, M.K.N; ONARI, E.; ARISAWA, E.A.L.; SILVA, N.S.; RAMOS, A.S. Osseointegration features of orthopedic Ti–10Si–5B implants. Materials Science and Engineering: C, V.29, Issue 3, 2009, Pages 980-986. KHALID, H.; CHAUDHRY, A. A. Basics of hydroxyapatite- structure, synthesis, properties, and clinical applications. In: CHAUDHRY, A.A; KHAN, A.S; Handbook of ionic substituted hydroxyapatite. Woodhead Publishing, 2020. KHAMKONGKAEO, A.; BOONCHUDUANG, T; KLYSUBUN, W; AMONPATTARATKIT, P; CHUNATE, H; TUCHINDA, N; PIMSAWAT, A; DAENGSAKUL, S; SUKSANGRAT, P; SAILUAM, W; VONGPRAMATE, D; BOOTCHANONT, A; LOHWONGWATANA, B. Sintering behavior and mechanical properties of hydroxyapatite ceramics prepared from Nile Tilapia (Oreochromis niloticus) bone and commercial powder for biomedical applications. Ceram. Inter., V.47, p. 34575-34584, 2021. KAUR, M; SIGH, K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science & Engineering C 102 (2019) 844–862. KIM, Do-Gyoon; JEONG, Yong-Hoon; CHIEN, Hua-Hong; AGNEW, Amanda M.; LEE, Jin Whan; WEN, Hai Bo. Immediate mechanical stability of threadd and porous implant systems. Clinical Biomechanics, (2017) pp. 110–117. KUMAR, T.S. Physical and Chemical Characterization of Biomaterials. BANDYPADHYAY, A.; BOSE, S. Characterization of biomaterials. Elservier, 2013. KUMAR, A.; MISRA, R.D.K. 3D-printed titanium alloys for orthopedic applications. In: FROES, F.H.; QIAN, M. Titanium in Medical and Dental Applications, Woodhead Publishing, 2018. LE HO, K.H.; HA DAO, V.; PHAM, X.K.; NGUYEN, P.A.; VY PHAN, B.; DOAN, T., T.; LAM, T. H. Physicochemical properties, acute and subchronic toxicity of nano- hydroxyapatite obtained from Lates calcarifer fish bone. Regional Studies in Marine Science Volume 55, September 2022. LIN, Z.; SONG, K.; YU, X. A review on wire and arc additive manufacturing of titanium alloy. Journal of Manufacturing Processes 70 (2021) 24–45. LOVE, B. Metallic Biomaterials. In: LOVE, B. Biomaterials: A systems approach to engineering concepts. Academic Press, 2017. LU, Y.; DONG, W; DING, J; WANG, W; WANG, A. Hydroxyapatite nanomaterials: synthesis, properties, and functional applications. Nanomaterials from Clay Minerals: A new approach to green functional materials, Elsevier, 2019. LUO, S.D; YANG, Y.F.; SCHAFFER, G.B; QIAN, S. The effect of a small addition of boron on the sintering densification, microstructure and mechanical properties of powder metallurgy Ti–7Ni alloy. Journal of Alloys and Compounds,V 555, 2013 , Páginas 339-346. MA, X.; LI, C.; DU, Z.; Zhang. Thermodynamic assessment of the Ti–B system. Journal of Alloys and Compounds V. 370, Issues 1–2 2004, Pages 149-158. MAGALHÃES, R.B. Avaliação do efeito da adição de Nb, Ta E Zr na estabilidade do composto Ti6Si2B. Dissertação (Mestrado em Ciência e Engenharia de Materiais) - Universidade Federal de Alfenas, Poços de Caldas, 2017. MAIDANIUC, A.; MICULESCU, F.; CIOCOIU, R.C; BUTTE, T.M; PASUK, I; STAN, G. E; VOICU, S, I; CIOCAN, L. T. Effect of the processing parameters on surface, physico-chemical and mechanical features of bioceramics synthesized from abundant carp fish bonés. Ceram. Inter., V. 46, 2020, Pages 10159-10171. MAJUMDAR, D.D;.KUMAR, V.;ROYCHOWDHURY; MONDAL, D.P; GHOSH, G.; NANDI, S.K. In vivo analysis of bone-tissue interface in medical grade titanium and porous titanium with and without cenosphere as space holder. Materialia, V. 9, March 2020. MODOLON, H.B.; INOCENTE, JORDANA, BERNARDIN, A.M.; MONTEDO, O.R.K; ARCARO, S.Nanostructured biological hydroxyapatite from Tilapia bone: A pathway to control crystallite size and crystallinity. Ceram. Inter. V. 47, 2021, Pages 27685-27693. MONDAL, S; HOANG, G.; MANIVASAGAN, P.; MOORTHY,M.S.; KIM, H.H.; VY PHAN, T., T.; OH, J. Comparative characterization of biogenic and chemical synthesized hydroxyapatite biomaterials for potential biomedical application. Materials Chemistry and Physics. Volume 228, 15 April 2019, Pages 344-356. MOHD PU’AD, N.A.S.; ABDUL HAQ, R.H.; MOHD NOH, H; ABDULLAH, H.Z.; IDRIS, M.I.; LEE, T.C. Synthesis method of hydroxyapatite: A review. Materials Today: Proceedings, 2020, 233–239 MOHD PU’AD, N.A.S.; KOSHY, P.; ABDULLAH, H.Z.; IDRIS, M.I.; LEE, T.C. Synthesis method of hydroxyapatite from natural sources. Helyon, V.5, 2019. MORENO, J.J.G; BÖNISCHC, M; PANAGIOTOPOULOS, N.T.; EVANGELAKIS, G.A; LEKKA C.E. Ab-initio and experimental study of phase stability of Ti-Nb alloys. Journal of Alloys and Compounds, 2017. MOSKALEWICZ, T.; DUBIEL, B.; WENDLER, B. AlCuFe(Cr) and AlCoFeCr coatings for improvement of elevated temperature oxidation resistance of a near-α titanium alloy. Materials Characterization, 2013, Pages 161-169. NAKANO, T.Physical and mechanical properties of metallic biomaterials. In: NIINOMI, M. Metals for Biomedical Devices. Woodhead Publishing,2019, P. 97-129. NAM; P.V; HOA, N. V.; TRUNG, T. S. Properties of hydroxyapatites prepared from different fish bones: A comparative study. Ceramics International, V.45, 2019, Pages 20141-20147. NASAR, A. Hydroxyapatite and its coatings in dental implants. In: ASIRI, A.M.; INAMUDDIN; MOHAMMAD, A. Applications of nanocomposite materials in dentistry.Woodhead Publishing, 2018. NASRAZADANI; S.; HASSANI, S. Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries. MAKHLOUF, A.S.H; ALIOFKHAZRAEI, M. Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry. Butterworth-Heinemann, 2016, Pages 39-54 NIIBE, M.; MIYAMOTO, K.; MITAMURA, T.; MOCHIJI, K. Identification of B-K near edge x-ray absorption fine structure peaks of boron nitride thin films prepared by sputtering deposition. Journal of Vacuum Science & Technology A 28, 1157–1160 (2010). NOURI, A.; HODGSON, P. D.; WEN, C. Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications. Biomimectis, Learning from Nature, (2010) pp. 1–39. NOURI, A. Titanium foam scaffolds for dental applications. In: WEN, Cuie. Metallic foam Bone. Woodhead,2017. doi: https://doi.org/10.1016/B978-0-08-101289-5.00005-6. OJEDA, J.J., DITRICH, M. Fourier Transform Infrared Spectroscopy for Molecular Anlaysis of Microbial Cells. In: NAVID, A. Microbial Systems Biology. Methods in Molecular biology, V. 881, Humana Press, 2012. ORÉFICE, R.L., PEREIRA, M.M., MANSUR, H.S. Biomateriais: Fundamentos & Aplicações. 1.ed. Rio de Janeiro: Cultura Médica, 2006. 538 p. OZAN, S.; MUNIR, K.; BIESIEKIERSKI, A.; IPEK, R.; YUCANG, L.; WEN, C. Titanium Alloys, Including Nitinol. In: WAGNER, W. R.; SAKIYAMA-ELBERT, S. E.; ZHANG, G; YASZEMSKI, M. J. Biomaterials: An Introduction to Materials in Medicine. Academic Press, 2020. OZAKI, Y. Selection of metals for biomedical devices. In: NIINOMI, M. Metals for Biomedical Devices. Woodhead Publishing,2019,p. 31-94. ÖZBILEN,S.; LIEBERT,D. ; BECK, T.; BRAM, M. Fatigue behavior of highly porous titanium produced by powder metallurgy with temporary space holders. Materials Science and Engineering: C, V. 60, 2016, p. 446-457. PAL, A; PAUL, S; CHOUDHURY, A. R.; BALLA, V.K.; DAS, M. SINHA, A. Synthesis of hydroxyapatite from Lates calcarifer fish bone for biomedical applications. Materials Letters 203 (2017) 89–92. PAŁKA, K; POKROWIECKI, R.; KRZYWICKA, M. Porous titanium materials and applications. In: FROES, F. QUIAN, M., NIINOMI, M.Titanium for Consumer Applications: Real world use of titanium, Elsevier, 2019. PATI, F.; ADHIKARI, B. DHARA, S. Isolation and characterization of fish scale collagen of higher thermal stability. Bioresource Technology,V. 101, Issue 10, May 2010, p.,3737-3742. PAUL, S. PAL, A.; CHOUDHURY, A. R. BODHAK, S; BALLA, V. K; SINHA,A; DAS,M. Effect of trace elements on the sintering effect of fish scale derived hydroxyapatite and its bioactivity. Ceram. Intert. V. 43, Issue 17, 1 December 2017, Pages 15678-1568. PETZOLD, A.; OGREN, J.A; FIEBIG, M. et al. Recommendations for the interpretation of “black carbon” measurements. Atmospheric Chemistry and Physics, vol. 13, pp. 8365–8379, 2013. POLMEAR, I.; JOHN, D. S. NIE, Jian-Feng, QIAN, M. TITANIUM ALLOYS. In: POLMEAR, I.; JOHN, D. S. NIE, Jian-Feng, QIAN, M. Light Alloys: Metallurgy of the light Metals. Butterworth-Heinemann, 2017. PRAKASH, C.; SINGH, S.; RAMAKRISHNA, S.; KRÓLCZYK, G., LE, C. H. Microwave sintering of porous TiNb-HA composite with high strength and enhanced bioactivity for implant applications. Journal of Alloys and Compounds,V. 824, 2020. PRASAD. A.; BHASNEY. S.; KATIYAR. V.; SANKAR. M. R. Biowastes Processed Hydroxyapatite filled Poly (Lactic acid) Bio-Composite for Open Reduction Internal Fixation of Small Bones. Materials Today: Proceedings. v. 4. n. 9. 2017a. PRASAD. A.; BHASNEY. S.; SANKAR. M. R.; KATIYAR. V. Fish Scale Derived Hydroxyapatite reinforced Poly (Lactic acid) Polymeric Bio-films: Possibilities for Sealing/locking the Internal Fixation Devices. Materials Today: Proceedings. v. 4. n. 2. 2017b. PUSHP, P.; DASHARATH, SM. ARATI, C. Classification and applications of titanium and its alloys. Materialstoday: Proocedings, Parte 2, 2022, Páginas 537-542. QIN, D.; BI, S. YOU, X.; WANG, M.; CONG, X.; YUAN, C.; YU, M.; CHENG, X.; CHEN, X. Development and application of fish scale wastes as versatile natural biomaterials. Chemical Engineering Journal, V. 428, 2022. RAMOS, A.S.; NUNES; C.A.; COELHO, G.C. Projeção liquidus do sistema ti-si-b na região delimitada por 100%Ti-30%Si-30%B. Congresso Brasileiro de Engenharia E Ciência Dos Materiais, 14, 2000, São Pedro - SP. Anais. RAMOS, A.S.; NUNES, C.A.; RODRIGUES, G.; SUZUKI, A.; COELHO, G.C.; GRYSTSIV, A.; ROGL, P. Ti6Si2B, a new ternary phase in the Ti-Si-B system. Intermetallics,V 14, Issue 6, junho de 2004 , Páginas 585-591. RAMOS, E.C.T.; SANTOS,DR; CAIRO, C.A.A.; HENRIQUES, V.A.R.; RAMOS; A.S. Effect of composition and milling parameters on the critical ball milling of Ti-Si-B powders. Journal of Alloys and Compounds,V 483, Issues 1–2, 2009 . RAMOS, E.C.T.; SILVA,G.; RAMOS, A.S.;NUNES, C.A.; BAPTISTA, C.A.R.P. Microstructure and oxidation behavior of Ti-Si-B alloys. Materials Science and Engineering: A,V 363, Issues 1–2, 2003 , Páginas 297-306. RAJPUT, S.; THAKUR, N.K. Sedimentation Pattern. RAJPUT, S.; THAKUR, N.K. Geological Controls for Gas Hydrate Formations and Unconventionals. Elsevier, 2016,Pages 69-106. RATNER, B.D; ZHANG, G. A History of Biomaterials. In: WAGNER, W.R; SAKIYAMA- ELBERT, S.E; ZHANG, G. YASZEMSKI, M.J. Biomaterials Science: Na Introduction to Material in Medicine. Academic Press, 2020. RODRIGUEZ-CONTRERAS, A.; PUNSET, M.; CALERO, J. A.; GIL, F.J.; RUPEREZ, E.; MANERO, J. M. Powder metallurgy with space holder for porous titanium implants: A review. Journal of Materials Science & Technology, V. 76, 2021, Pages 129-149. RUIZ-VARGAS, J.; SIREDEY-SCHWALLER, N.; NOYREZ, P.; MATHIEU, S.; BOCHER, P.; GEY, N.Potential and limitations of microanalysis SEM techniques to characterize borides in brazed Ni-based superalloys. Materials Characterization, 2014, 94, pp.46-57. ff10.1016/j.matchar.2014.04.009ff. ffhal015136 SAFARZADEH, M.; RAMESH, S.; TAN, C.Y., CHANDRAN, H., CHING, Y.C.; NOOR, A.F.M.; KRISHNASAMY, S.; TENG W. Sintering behaviour of carbonated hydroxyapatite prepared at different carbonate and phosphate ratios Bol. Soc. Esp. Ceram. Vidr., 59 (2020), pages. 73-80. SANKARAN, K.K; MISHRA, R. S 2017. Titanium Alloys. Metallurgy and Design of Alloys with Hierarchical Microstructures. Elsevier, 2017. SATHISKUMAR, S.; VANARAJ, S. SABARINATHAN, D; BHARATH, S.; SIVARASAN; ARULMANI, S.; PREETHI, K.; PONNUSAMY, V. K. Green synthesis of biocompatible nanostructured hydroxyapatite from Cirrhinus mrigala fish scale – A biowaste to biomaterial. Ceramics International 45 (2019) 7804–7810. SATHIYAVIMAL, S.; VASANTHARAJ, S.; OSCAR, F.L.; SELVARAJ, R.; BRINDHADEVI, K.; PUGAZHENDHI, A. Natural organic and inorganic–hydroxyapatite biopolymer composite for biomedical applications. Progress in Organic Coantings,2020. SHANMUGAM, K; SAHADEVA, R. Bioceramics—An introductory overview. THOMAS, S; BALAKRISHNAN, P. SREEKALA, M. Fundamental Biomaterials: Ceramics. Woodhead Publishing, 2018. SHBEH, M.; WALLY, Z.J.; ELBADAWI, M.; MOSALAGAE, M.; AL-ALAK; REILLY, G.C; GOODBALL. R. Incorporation of HA into porous titanium to form Ti-HA biocomposite foams.Journal of the Mechanical Behavior of Biomedical Materials, V.96, 2019, Pages 193-203. SHI, P.; LIU, M; FAN, F; YU, C; LU, W; DU, M. Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblastos. Materials Science and Engineering: C, V 90, 2018, Pages 706-712. SILVA, A.S; FERRI, F.A. SCANNING ELECTRON MICROSCOPY. RÓZ, A.L.; FERREIRA, M.; LEITE, F.L.; OLIVEIRA JÚNIOR, O.N. Nanocharacterization Techniques. Willian Andrew, 2017, p.1-35. SILVA, V.S.; TORQUATO, L.D.M.; CRUZ, G. Potential application of fish scales as feedstock in thermochemical processes for the clean energy generation. Waste Management, 2019,V. 100, December 2019, Pages 91-100 SILVA, A.V.S; MORTARI, D.A.; CONCONI, C.C.; PEREIRA, F.M.; CRUZ, G. Investigation of the combustion process of fish scales from Northeast Brazil in a drop tube furnace (DTF). Environmental Science and Pollution Research v. 29, p. 67270–67286. Springe Link, 2022. SILVA, G.; RAMOS, E.C.T.; RAMOS, A.S. Synthesis of the Ti6Si2B compound by mechanical alloying. Journal Alloys Compounds, v. 428, p.173-178, 2007. SILVA, A.N.; SILVA, G.; RAMOS, A.S.; PASCHOAL, A.L.; RAMOS, E.C.T.; FILGUEIRA, M. Preparation of Ti+Ti6Si2B powders by high-energy ball milling and subsequent heat treatment. Intermetallics, v. 14, p.585-591, 2006. SINGH, R.; SINGH, B. P.; GUPTA, A.; PRAKASH, C. Fabrication and characterization of Ti-Nb-HA alloy by mechanical alloying and spark plasma sintering for hard tissue replacements. IOP Conf. Series: Materials Science and Engineering 225 (2017). doi:10.1088/1757-899X/225/1/012051. SINGH, G.; RAMAMURTY.U. Reprint: Boron modified titanium alloys. Progress in Materials Science.V 120, July 2021. SINGH, G.; RAMAMURTY.U. Boron modified titanium alloys. Progress in Materials Science.V 111, 2020. SOBCZAK-KUPIEC, A.; WZOREK, Z. The influence of calcination parameters on free calcium oxide content in natural hydroxyapatite. Ceramics International.V. 38, 2012, Pages 641-647. SOSSA, P.A.F.; GIRALDO, B.S.; GARCIA, C.G.; PARRA, E.R.; ARANGO. P.J.A. Comparative study between natural and synthetic Hydroxyapatite: structural, morphological and bioactivity properties. Matéria (Rio J.) 2018. https://doi.org/10.1590/S1517- 707620180004.0551. SUN, J.; LI, T.; ZHANG, G.P.; FU.Q.G. Different oxidation protection mechanisms of HAPC silicide coating on niobium alloy over a large temperature range. Journal of Alloys and Compounds, Vo 790, 2019, Pages 1014-1022 SUNIL, B. R.; JAGANNATHAM, M. Producing hydroxyapatite from fish bones by heat treatment. Materials Letters, V. 185, 2016, Pages 411-414. TAMIRISAKANDALA, S; MIRACLE, D.B. Microestructure engineering of titanium alloys via small boron additions. International Journal of Advances in Engineering Sciences and Apllied Matematics, V. 2; 2012. Pages 168-180. TAN, M.H.C.; BAGHI,A.D; GHOMASHCHI, R.; XIAO, W.; OSKOUEI, H. Effect of niobium content on the microstructure and Young's modulus of Ti-xNb-7Zr alloys for medical implants. Journal of the Mechanical Behavior of Biomedical Materials, V.99, 2019, Pages 78-85. TANZI, M. C.; FARÈ, S.; CANDIANI, G. Biomaterials and Applications. In: Foundations of Biomaterials Engineering. Academic Press, 2019. TERZIOGLU, P.; Öğüt, H. KALEMTAS, A. Natural calcium phosphates from fish bones and their potential biomedical applications. Mater. Sci. Eng. C, v.91, n.1, p. 899-911, 2018. THIAN, E.S.; LOH, N.H; KHOR, S.B. Microstructures and mechanical properties of powder injection molded Ti-6Al-4V/HA powder. Biomaterials, V. 23, 2002, P. 2927-2938. THIRUKUMARAN, R.; PRYA, V.K.A; KRISHNAMOORTHY, S. RAMAKRISHNAN, P.; MOSES, J.A; ANANDHARAMAKRISHNAN, C. Resource recovery from fish waste: Prospects and the usage of intensified extraction Technologies. Chemosphere, v 299, 2022. TITUS, D.; SAMUEL, E.J.J; ROOPAN; S. M. Nanoparticle characterization techniques. Shukla, A.K; IRAVANI, S. Green Sythesis, Characterization and Aplications of Nanoparticles. Elsevier, 2019. TUFAIL, A.; SCHMIDT, F.; MAQBOOL, M. Three-dimensional printing of hydroxyapatite. In: CHAUDHRY, A.A; KHAN, A.S; Handbook of ionic substituted hydroxyapatite.Woodhead Publishing,2020. VISHNU, D.S.M.; SURE, J.; LIU, Y.; KUMAR, V.; SCHWANT, C. Electrochemical synthesis of porous Ti-Nb alloys for biomedical applications. Materials Science and Engineering: C, V. 96, 2019, Pages 466-478. WOLFGONG, W.J. Chemical analysis techniques for failure analysis: Part 1, common instrumental methods. In: MAKHLOUF, A.S.H; ALIOFKHAZRAEI, M. Handbook of Materials Failure Analysis with Case Studies from the Aerospace and Automotive Industries. Butterworth-Heinemann, 2016, Pages 279-307. YAMAMURA, H; SILVA, V. H. P. DA; RUIZA, P. L. M.; USSUIB, V; LAZARB, D. R. R.; Rennoa, A. C. M.; Ribeiro, D. A. Physico-chemical characterization and biocompatibility of hydroxyapatite derived from fish waste. Journal of the Mechanical Behavior of Biomedical Materials, Volume 80, April 2018, Pages 137-142. YANG, Y.; CHANG, Y.A.; TAN, L. Thermodynamic modeling and experimental investigation of the Ti-rich corner of the Ti–Si–B system. Intermetallics, V. 13, Issue 10, 2005, Pages 1110-1115. YILMAZ, E.; GÖKÇE, A.; FINDIK, F. GULSOY, H. Electrochemical Corrosion Behavior of Ti and Ti-16Nb Alloy for Implant Applications. 8th International Advanced Technologies Symposium (IATS’17), 2017. YILMAZ, E.; GÖKÇE, A.; FINDIK, F. GULSOY, H. Metallurgical properties and biomimetic HA deposition performance of Ti-Nb PIM alloys. Journal of Alloys and Compounds, V. 746, 25 May 2018, Pages 301-313. XIE, B; FAN, Y.Z.; MU, T.Z.; DENG, B. Fabrication and energy absorption properties of titanium foam with CaCl2 as a space holder. Materials Science and Engineering: A, V.708, 2017, Pages 419-423. ZAKARIA, M. Y.; RAMLI, M. I.; SULONG, A. B.; MUHAMAD, M.; ISMAIL, M. H.Application of sodium chloride as space holder for powder injection molding of alloy Titanium–Hydroxyapatite composites.Journal of Materials Research and Technology, 2021. ZELLAGUI, S.; TROUVÉ G.; SCHONNENBECK, C. et al.Parametric study on the particulate matter emissions during solid fuel combustion in a drop tube furnace. Fuel, 2017, V. 189, Pages 358-368. ZHANG, L.; HE.Z.Y.; ZHANG, Y.Q; JIANG, Y.H.; ZHOU, R. Rapidly sintering of interconnected porous Ti-HA biocomposite with high strength and enhanced bioactivity. Materials Science and Engineering: C, V. 67, 1 2016, Pages 104-114. ZHAN, Y.; ZHANG.X.; HU. J.; GUO, Q.; DU, Y. Evolution of the microstructure and hardness of the Ti-Si alloys during high temperature heat-treatment. Journal of Alloys and Compounds V. 479, Issues 1–2, 2009, Pages 246-251 ZHANG, B.; WU, X. ZHANG, D. Effect of silicon addition on the microstructure and mechanical properties of a high strength Ti-4Al-4Mo-4Sn alloy prepared by powder metallurgy. Journal of Alloys and Compounds, V. 893 , 2022. ZHU,L.; REN,X.; WANG, X.; KANG,X.; ZHENG, R.; FENG, P. Microstructure and high- temperature oxidation resistance of MoSi2-ZrO2 composite coatings for Niobium substrate.Journal of the European Ceramic Society,V. 41, Issue 2, February 2021, Pages 1197- 1210. ZHU, L.; WANG, X.; MAO, C.; REN, X.; FENG, P. Influence of Ta2O5 on the micromorphology and high-temperature oxidation resistance of MoSi2-based composite coating for protecting niobium. Materials Characterization,V 179, 2021 b, 111328.pt_BR
Aparece nas coleções:Dissertações

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissert_Cristiane Carvalho.pdfDissertação23.17 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons

Ferramentas do administrador