Campus Vitória da Conquista Trabalhos de Conclusão de Cursos (TCCs)
Use este identificador para citar ou linkar para este item: https://repositorio.ifba.edu.br/jspui/handle/123456789/425
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSANTOS, ESTER DA CUNHA MEIRA-
dc.date.accessioned2023-08-08T17:19:10Z-
dc.date.available2023-08-
dc.date.available2023-08-08T17:19:10Z-
dc.date.issued2023-07-27-
dc.identifier.citationSANTOS, Ester da Cunha Meira. Fatores que afetam a produção de biodiesel utilizando óleos e gorduras residuais (OGRs): uma revisão. Trabalho de Conclusão de Curso (Graduação) 46 f. 2023. Curso de Licenciatura em Química. Instituto Federal de Educação, Ciência e Tecnologia da Bahia, Vitória da Conquista, 2023.pt_BR
dc.identifier.urihttp://repositorio.ifba.edu.br/jspui/handle/123456789/425-
dc.description.abstractConsumption and large-scale production have increased the demand for energy in the world. Given this situation for decades, fossil fuels such as oil, coal and natural gas were used, however, their use poses environmental risks. An alternative is the use of biofuels, which are fuels produced from biomass. Among these, biodiesel stands out as an excellent alternative, due to its renewability and similarity to petroleum diesel in its structure and behavior. Biodiesel can be produced from a process known as transesterification, in which triglycerides present in vegetable oil or animal fat react with a short-chain alcohol in the presence of catalysts. Production and yield are affected by some factors, such as: the type of oil, alcohol, catalyst and the technique used. A proposal for this process is the replacement of new oil by waste cooking oil (WCO), as in addition to reducing process costs, it enables solutions to the problem of improper disposal of oils and fats. The objective of this research was to compare, through a literature review, the different biodiesel production methods using residual oils and fats. Three factors that affect the yield of biodiesel production using OGRs were analyzed: type of alcohol, catalyst and process intensification techniques. By choosing the Science Direct database (Elsevier), 60 documents from the last 7 years were analyzed. It was observed that 56 studies used methanol due to its high reactivity, most of which found a yield greater than 90%. Three studies used ethanol, alcohol considered renewable, and all found a yield greater than 94%. Butanol was used in one study and promoted a yield of 95.6%. Homogeneous basic catalysts resulted in yields between 40 and 100%, heterogeneous basic catalysts between 45.52 and 100%, and heterogeneous acid catalysts between 78 and 96%. Enzymatic catalysts obtained a yield of 91.8 to 98.5%, bringing the possibility of recycling these reagents, which reinforces a sustainable production. There was a great use of conventional methods for the production of biodiesel, such as reactors equipped with mechanical and magnetic stirrers, heating plates and blankets, and reflux condensers. These methods resulted in yields of 40 to 100% and reaction times between 30 and 2880 minutes. It was also noted the use of process intensification techniques, with the use of autoclaves, electrolytic cells, microwaves, microreactors, ultrasonic reactors and production assisted by UV irradiation. PI techniques resulted in yields of 71.1 to 98.8% with reaction times between 9.15 and 900 minutes. The choice of each of these variables significantly affected the production of this biofuel, interfering with reaction time and yield. Studies on the relationship between the variables and the respective yield can be one of the research topics in this area in Brazil, contributing to the scientific and sustainable development of biodiesel production.pt_BR
dc.languageporpt_BR
dc.publisherInstituto Federal de Educação, Ciência e Tecnologia da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectBiocombustiveispt_BR
dc.subjectbiofuelspt_BR
dc.subjectBiodieselpt_BR
dc.subjectÓleos e gorduras residuaispt_BR
dc.subjectwaste cooking oilpt_BR
dc.subjectVariáveispt_BR
dc.subjectvariablespt_BR
dc.subjectbiodiesel productionpt_BR
dc.subjectProdução biodieselpt_BR
dc.titleFatores que afetam a produção de biodiesel utilizando óleos e gorduras residuais (OGRs): uma revisãopt_BR
dc.typeTrabalho de Conclusão de Cursopt_BR
dc.contributor.advisor1Silva, Luiz Elói da-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3724645870406909pt_BR
dc.contributor.referee1Silva, Luiz Elói da-
dc.contributor.referee2Brito, Fernando de Azevedo Alves-
dc.contributor.referee3Santos, Wdson Costa-
dc.description.resumoO consumo e a produção em larga escala têm aumentado a demanda por energia no mundo. Atendendo a esta situação por décadas, foram utilizados combustíveis fósseis como o petróleo, carvão mineral e o gás natural, entretanto, o seu uso oferece riscos ambientais. Uma alternativa é o uso de biocombustíveis, que são combustíveis produzidos a partir da biomassa. Dentre estes, o biodiesel destaca- se como uma excelente alternativa, devido a sua renovabilidade e semelhança ao diesel de petróleo em sua estrutura e comportamento. O biodiesel pode ser produzido a partir de um processo conhecido como transesterificação, no qual os triglicerídeos presentes no óleo vegetal ou gordura animal reagem com um álcool de cadeia curta na presença de catalisadores. A produção e rendimento são afetados por alguns fatores, tais como: o tipo de óleo, álcool, catalisador e a técnica utilizada. Uma proposta para este processo é a substituição do óleo novo por óleos e gorduras residuais (OGRs), pois além de diminuir os custos do processo, possibilita soluções para o problema de descarte inadequado de óleos e gorduras. O objetivo desta pesquisa foi comparar, por meio da revisão de literatura, os diferentes métodos de produção de biodiesel utilizando óleos e gorduras residuais. Foram analisados três fatores que afetam o rendimento da produção de biodiesel utilizando OGRs: tipo de álcool, catalisador e técnicas de intensificação do processo. Por meio da escolha da base de dados Science Direct (Elsevier), foram analisados 60 documentos dos últimos 7 anos. Observou-se que 56 pesquisas utilizaram metanol devido a sua alta reatividade, tendo a maioria encontrado rendimento superior a 90%. Três pesquisas utilizaram o etanol, álcool considerado renovável, e todos encontraram rendimento superior a 94%. O butanol foi utilizado em um estudo e promoveu rendimento de 95,6%. Catalisadores básicos homogêneos resultaram em rendimentos entre 40 e 100%, catalisadores básicos heterogêneos entre 45,52 e 100%, e catalisadores ácidos heterogêneos entre 78 e 96%. Catalisadores enzimáticos obtiveram rendimento de 91,8 a 98,5%, trazendo a possibilidade de reciclagem destes reagentes, o que reforça uma produção sustentável. Observou-se a grande utilização de métodos convencionais para a produção de biodiesel, tais como reatores equipados com agitadores mecânicos e magnéticos, placas e mantas de aquecimentos, e condensadores de refluxo. Estes métodos resultaram em rendimentos de 40 a 100% e tempos de reação entre 30 e 2880 minutos. Notou-se também a utilização de técnicas de intensificação do processo, com o uso de autoclaves, células eletrolíticas, micro-ondas, microrreatores, reatores ultrassônicos e produção assistida por irradiação UV. As técnicas de IP resultaram em rendimentos de 71,1 a 98,8% com tempos de reação entre 9,15 e 900 minutos. A escolha de cada uma dessas variáveis afetou significativamente a produção deste biocombustível, interferindo no tempo de reação e rendimento. Estudos sobre a relação das variáveis e do respectivo rendimento podem ser um dos tópicos de pesquisa desta área no Brasil, contribuindo para o desenvolvimento científico e sustentável da produção de biodiesel.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentDepartamento de Ensino Superior/Licenciaturapt_BR
dc.publisher.initialsIFBApt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA::QUIMICA TEORICApt_BR
dc.relation.referencesABDULLAH, R. F.; RASHID, U.; IBRAHIM, M. L.; HAZMI, B.; ALHARTHI, F. A.; NEHDI, I. A. Bifunctional nano-catalyst produced from palm kernel shell via hydrothermal-assisted carbonization for biodiesel production from waste cooking oil. Renewable and Sustainable Energy Reviews, v. 13, 2021. Disponível em: https://doi.org/10.1016/j.rser.2020.110638 AMENAGHAWON, A. N.; OBAHIAGBON, K.; ISESELE, V.; USMAN, F. Optimized biodiesel production from waste cooking oil using a functionalized bio-based heterogeneous catalyst. Cleaner Engineering and Technology, v. 8, 2022. Disponível em: https://doi.org/10.1016/j.clet.2022.100501 ATHAR, M.; ZAIDI, S. A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production. Journal of Environmental Chemical Engineering, v. 8, 2020. Disponível em: https://doi.org/10.1016/j.jece.2020.104523 ATTARI, A.; MAYVAN, A. A.; ALISARAEI, A. T. Process optimization of ultrasonic- assisted biodiesel production from waste cooking oil using waste chicken eggshell- derived CaO as a green heterogeneous catalyst. Biomass and Bioenergy, v. 158, 2022. Disponível em: https://doi.org/10.1016/j.biombioe.2022.106357 BINHAYEEDING, N.; KLOMKLAO, S.; PRASERTSAN, P.; SANGKHARAK, K. Improvement of biodiesel production using waste cooking oil and applying single and mixed immobilised lipases on polyhydroxyalkanoate. Renewable Energy, v. 162, 2020. Disponível em: https://doi.org/10.1016/j.renene.2020.10.009 BORA, A. P.; KONDA, L. D. N. V. V.; PASUPULETI, S.; DURBHA, K. S. Synthesis of MgO/MgSO4 nanocatalyst by thiourea–nitrate solution combustion for biodiesel production from waste cooking oil. Renewable Energy, v. 190, 2022. Disponível em: https://doi.org/10.1016/j.renene.2022.03.127 BORAH, M. J.; DAS, A.; DAS, V.; BHUYAN, N.; DEKA, D. Transesterification of waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaO nanocatalyst. Fuel, v. 242, 2019. Disponível em: https://doi.org/10.1016/j.fuel.2019.01.060 BRASIL. Lei no 13.263, de 23 de março de 2016. Dispõe sobre os percentuais de adição de biodiesel comercializado em território nacional. Brasília - DF, 2016. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2015- 2018/2016/lei/l13263.htm. Acesso em 02 de julho de 2023. BRASIL. Resolução no 3, de 20 de março de 2023. Dispõe sobre a evolução da adição obrigatória de biodiesel ao óleo diesel vendido ao consumidor final, em qualquer parte do território nacional, e dá outras providências. Brasília - DF, 2023. Disponível em: https://www.in.gov.br/web/dou/-/despacho-do-presidente-da- republica-473383252. Acesso em 02 de julho de 2023. CARPIO, L. G. T.; SOUZA, F. S. Optimal allocation of sugarcane bagasse for producing bioelectricity and second generation ethanol in Brazil: Scenarios of cost reductions. Renewable Energy, v. 111, 2017. Disponível em: 40 http://dx.doi.org/10.1016/j.renene.2017.05.015 CHEN, G.; LIU, J.; YAO, J.; QI, Y.; YAN, B. Biodiesel production from waste cooking oil in a magnetically fluidized bed reactor using whole-cell biocatalysts. Energy Conversion and Management, v. 138, 2017. Disponível em: http://dx.doi.org/10.1016/j.enconman.2017.02.036 CHOLAPANDIAN, K.; GURUNATHAN, B.; RAJENDRAN, N. Investigation of CaO nanocatalyst synthesized from Acalypha indica leaves and its application in biodiesel production using waste cooking oil. Fuel, v. 312, 2022. Disponível em: https://doi.org/10.1016/j.fuel.2021.122958 CHUNG, Z. L.; TAN, Y. H.; CHAN, Y. S.; KANSEDO, J.; MUBARANK, N. M.; GHANSEMI, M.; ABDULLAH, M. O. Life cycle assessment of waste cooking oil for biodiesel production using waste chicken eggshell derived CaO as catalyst via transesterification. Biocatalysis and Agricultural Biotechnology, v. 21, 2019. Disponível em: https://doi.org/10.1016/j.bcab.2019.101317 CONAB. País confirma recorde na produção de etanol: 35,6 bilhões de litros na safra 2019/20. CONAB, 2020. Disponível em: https://www.conab.gov.br/ultimas- noticias/3342-pais-confirma-recorde-historico-na-producao-de-etanol-35-6-bilhoes- de-litros-na-safra-2019-20. Acesso em: 10 de fevereiro de 2021. COSTA, M. J.; SILVA, M. R. L.; FERREIRA, E. E. A.; CARVALHO, A. K. F.; BASSO, R. C.; PEREIRA, E. B.; CASTRO, H. F.; MENDES, A. A.; HIRATA, D. B. Enzymatic biodiesel production by hydroesterification using waste cooking oil as feedstock. Chemical Engineering and Processing - Process Intensification, v. 157, 2020. Disponível em: https://doi.org/10.1016/j.cep.2020.108131 DHARMALINGAM, B.; BALAMURUGAN, S.; WETWATANA, U.; TONGNAN, V.; SEKHAR, C.; PARAMASIVAM, B.; CHEENKACHORN, K.; TAWAI, A.; SRIARIYANUM, M. Comparison of neural network and response surface methodology techniques on optimization of biodiesel production from mixed waste cooking oil using heterogeneous biocatalyst. Fuel, v. 340, 2023. Disponível em: https://doi.org/10.1016/j.fuel.2023.127503 ELDIEHY, K. S. H.; DAIMARY, N.; BORAH, D.; SARMAH, D.; BORA, U.; MANDAL, M.; DEKA, D. Towards biodiesel sustainability: Waste sweet potato leaves as a green heterogeneous catalyst for biodiesel production using microalgal oil and waste cooking oil. Industrial Crops & Products, v. 187, 2022. Disponível em: https://doi.org/10.1016/j.indcrop.2022.115467 FIGUEROA, E. S.; CERVANTES, V. Y. M.; SOLARES, M. G.; ALTAMIRANO, R. H.; ARENAS, J. V. Statistical optimization of biodiesel production from waste cooking oil using CaO as catalyst in a Robinson-Mahoney type reactor. Fuel, v. 282, 2020. Disponível em: https://doi.org/10.1016/j.fuel.2020.118853 GAO, Y.; CHEN, Y.; GU, J.; XIN, Z.; SUN, S. Butyl-biodiesel production from waste cooking oil: Kinetics, fuel properties and emission performance. Fuel, v. 236, 2019. Disponível em: https://doi.org/10.1016/j.fuel.2018.09.015 GARDY, J.; OSATIASHTIANI, A.; CÉSPEDES, O.; HASSANPOUR, A.; LAI, X.; LEE, 41 A. F.; WILSON, K.; REHAN, M. A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Applied Catalysis B: Environmental, v. 234, 2018. Disponível em: https://doi.org/10.1016/j.apcatb.2018.04.046 GAUR, A.; MISHRA, S.; CHOWDHURY, S.; BAREDAR, P.; VERMA, P. Materials Today: Proceedings A review on factor affecting biodiesel production from waste cooking oil: An Indian perspective. Materials Today: Proceedings, v. 46, 2020. Disponível em: https://doi.org/10.1016/j.matpr.2020.09.432 GONÇALVES, M. A.; MARES, E. K. L.; ZAMIAN, J. R.; FILHO, G. N. R.; CONCEIÇÃO, L. R. V. Statistical optimization of biodiesel production from waste cooking oil using magnetic acid heterogeneous catalyst MoO3/SrFe2O4. Fuel, v. 304, 2021. Disponível em: https://doi.org/10.1016/j.fuel.2021.121463 GOURAN, A.; AGHEL, B.; NASIRMANESH, F. Biodiesel production from waste cooking oil using wheat bran ash as a sustainable biomass. Fuel, v. 295, 2021. Disponível em: https://doi.org/10.1016/j.fuel.2021.120542 GUO, M.; JIANG, W.; CHEN, C.; QU, S.; LU, J.; YI, W.; DING, J. Process optimization of biodiesel production from waste cooking oil by esterification of free fatty acids using La3+/ZnO-TiO2 photocatalyst. Energy Conversion and Management, v. 229, 2021. Disponível em: https://doi.org/10.1016/j.enconman.2020.113745 GUPTA, A. R.; RATHOD, V. K. Calcium diglyceroxide catalyzed biodiesel production from waste cooking oil in the presence of microwave: Optimization and kinetic studies. Renewable Energy, v. 121, 2018. Disponível em: https://doi.org/10.1016/j.renene.2017.11.027 HALWE, A. D.; DESHMUKH, S. J.; KANU, N. J.; GUPTA, E.; TALE, R. B. Optimization of the novel hydrodynamic cavitation based waste cooking oil biodiesel production process parameters using integrated L9 Taguchi and RSM approach. Materials Today: Proceedings, v. 47, 2021. Disponível em: https://doi.org/10.1016/j.matpr.2021.04.484 HELMI, M.; HEMMATI, A. Synthesis of magnetically solid base catalyst of NaOH/Chitosan-Fe3O4 for biodiesel production from waste cooking oil: Optimization, kinetics and thermodynamic studies. Energy Conversion and Management, v. 248, 2021. Disponível em: https://doi.org/10.1016/j.enconman.2021.114807 HELMI, M.; TAHVILDARI, K.; HEMMATI, A.; AZAR, P. A.; SAFEKORDI, A. Phosphomolybdic acid/graphene oxide as novel green catalyst using for biodiesel production from waste cooking oil via electrolysis method: Optimization using with response surface methodology (RSM). Fuel, v. 287. 2021. Disponível em: https://doi.org/10.1016/j.fuel.2020.119528 IBRAHIM, N. A.; RASHID, U.; HAZMI, B.; MOSER, B. R.; ALHARTHI, F. A.; ROKHUM. S. L.; NGAMCHRUSSRIVICHAI, C. Biodiesel production from waste cooking oil using magnetic bifunctional calcium and iron oxide nanocatalysts derived from empty fruit bunch. Fuel, v. 317, 2022. Disponível em: https://doi.org/10.1016/j.fuel.2022.123525 42 IEA. Total CO2 emissions, World 1990-2018. International Energy Agency, 2020. Disponível em: https://www.iea.org/data-and- statistics?country=WORLD&fuel=CO2%20emissions&indicator=TotCO2. Acesso em: 10 de fev. de 2021. IEA. World total energy supply by source. International Energy Agency, 2021. Disponível em: https://www.iea.org/reports/key-world-energy-statistics-2021/supply. Acesso em: 02 de julho de 2023. JAMIL, U.; KHOJA, A. H.; LIAQUAT, R.; NAQVI, S. R.; OMAR, W. N. N. W.; AMIN, N. A. S. Copper and calcium-based metal organic framework (MOF) catalyst for biodiesel production from waste cooking oil: A process optimization study. Energy Conversion and Management, v. 215, 2020. Disponível em: https://doi.org/10.1016/j.enconman.2020.112934 JUME, B. H.; AHRANJANI, P. J.; SAEI, S. F.; MAHMOOD, F. M. Z.; VASSEGHIAN, Y.; REZANIA, S. Strontium titanium trioxide doped magnetic graphene oxide as a nanocatalyst for biodiesel production from waste cooking oil. Sustainable Energy Technologies and Assessments, v. 54, 2022. Disponível em: https://doi.org/10.1016/j.seta.2022.102619 JUME, B. H.; GABRIS, M. A.; NODEH, H. R.; REZANIA, S.; CHO, J. Biodiesel production from waste cooking oil using a novel heterogeneous catalyst based on graphene oxide doped metal oxide nanoparticles. Renewable Energy, v. 162, 2020. Disponível em: https://doi.org/10.1016/j.renene.2020.10.046 KAMARONZAMAN, M. F. F.; KAHAR, H.; HASSAN, N.; HANAFI, M. F.; SAPAWE, N. Biodiesel production from waste cooking oil using nickel doped onto eggshell catalyst. Materials Today: Proceedings, v. 31, 2020a. Disponível em: https://doi.org/10.1016/j.matpr.2020.06.159 KAMARONZAMAN, M. F. F.; KAHAR, H.; HASSAN, N.; HANAFI, M. F.; SAPAWE, N. Optimization of biodiesel production from waste cooking oil using eggshell catalyst. Materials Today: Proceedings, v. 31, 2020b. Disponível em: https://doi.org/10.1016/j.matpr.2020.06.080 KARMAKER, A. K.; RAHMAN, M.; HOSSAIN, A.; AHMED, R. Exploration and corrective measures of greenhouse gas emission from fossil fuel power stations for Bangladesh. Journal of Cleaner Production, v. 244, 2020. Disponível em: https://doi.org/10.1016/j.jclepro.2019.118645 KHAN, H. M.; IQBAL, T.; ALI, C. H.; JAVAID, A.; CHEEMA, I. I. Sustainable biodiesel production from waste cooking oil utilizing waste ostrich (Struthio camelus) bones derived heterogeneous catalyst. Fuel, v. 277, 2020. Disponível em: https://doi.org/10.1016/j.fuel.2020.118091 MALEKI, B.; ESMAEILI, H. Application of Fe3O4/SiO2@ZnO magnetic composites as a recyclable heterogeneous nanocatalyst for biodiesel production from waste cooking oil: Response surface methodology. Ceramics International, v. 49, 2023. Disponível em: https://doi.org/10.1016/j.ceramint.2022.11.344 MANSIR, N.; TEO, S. W.; RASHID, U.; SAIMAN, M. I.; TAN, Y. P.; ALSULTAN, G. 43 A.; YAP, Y. H. T. Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review. Renewable and Sustainable Energy Reviews, v. 82, 2018. Disponível em: http://dx.doi.org/10.1016/j.rser.2017.10.098 MARTÍN, J. F. G.; BARRIOS, C. C.; ÁLVAREZ, F. J. A.; SÁEZ, A. D.; MATEOS, P. A. Biodiesel production from waste cooking oil in an oscillatory flow reactor. Performance as a fuel on a TDI diesel engine. Renewable Energy, v. 125, 2018. Disponível em: https://doi.org/10.1016/j.renene.2018.03.002 MAWLID, O. A.; ABDELHADY, H. H.; DEAB, M. S. E. Boosted biodiesel production from waste cooking oil using novel SrO/MgFe2O4 magnetic nanocatalyst at low temperature: Optimization process. Energy Conversion and Management, v. 273, 2022. Disponível em: https://doi.org/10.1016/j.enconman.2022.116435 MILANO, J.; ONG, H. C.; MASJUKI, H. H.; SILITONGA, A. S.; CHEN, W. H.; KASUMO, F.; DHARMA, S.; SEBAYANG, A. H. Optimization of biodiesel production by microwave irradiation-assisted transesterification for waste cooking oil- Calophyllum inophyllum oil via response surface methodology. Energy Conversion and Management, v. 158, 2018. Disponível em: https://doi.org/10.1016/j.enconman.2017.12.027 MOHADESI, M.; AGHEL, B.; MALEKI, M.; ANSARI, A. The use of KOH/Clinoptilolite catalyst in pilot of microreactor for biodiesel production from waste cooking oil. Fuel, v. 263, 2020. Disponível em: https://doi.org/10.1016/j.fuel.2019.116659 MOYO, L. B.; IYUKE, S. E.; MUVHIIWA, R.F.; SIMATE, G. S.; HLABANGANA, N. Application of response surface methodology for optimization of biodiesel production parameters from waste cooking oil using a membrane reactor. South African Journal of Chemical Engineering, v. 35, 2021. Disponível em: https://doi.org/10.1016/j.sajce.2020.10.002 NAEEM, A.; KHAN, I. W.; FAROOQ, M; MAHMOOD, T.; DIN, I. U.; GHAZI, Z. A.; SAEED, T. Kinetic and optimization study of sustainable biodiesel production from waste cooking oil using novel heterogeneous solid base catalyst. Bioresource Technology, v. 328, 2021. Disponível em: https://doi.org/10.1016/j.biortech.2021.124831 NIYAS, M. M.; SHAIJA, A. Biodiesel production from coconut waste cooking oil using novel solar powered rotating flask oscillatory flow reactor and its utilization in diesel engine. Thermal Science and Engineering Progress, v. 40, 2023. Disponível em: https://doi.org/10.1016/j.tsep.2023.101794 OUTILI, N.; KERRAS, H.; NEKKAB, C.; MEROUANI, R.; MENIAI, A. H. Biodiesel production optimization from waste cooking oil using green chemistry metrics. Renewable Energy, v. 145, 2020. Disponível em: https://doi.org/10.1016/j.renene.2019.07.152 OZOR, P. A.; AIGBODION, V. S.; SUKDEO, N. I. Modified calcium oxide nanoparticles derived from oyster shells for biodiesel production from waste cooking oil. Fuel Communications, v. 14, 2023. Disponível em: Fuel Communications 44 PETRAKOPOULOU, F.; ROBINSON, A.; DELGADO, M. O. Impact of climate change on fossil fuel power-plant efficiency and water use. Journal of Cleaner Production, v. 273, 2020. Disponível em: https://doi.org/10.1016/j.jclepro.2020.122816 PUTRA, M. D.; IRAWAN, C.; UDIANTORO; RISTIANINGSIH, Y. A cleaner process for biodiesel production from waste cooking oil using waste materials as a heterogeneous catalyst and its kinetic study. Journal of Cleaner Production, v. 195, 2018. Disponível em: https://doi.org/10.1016/j.jclepro.2018.06.010 PUTRA, M. D.; NATA, I. F.; IRAWAN, C. Biodiesel production from waste cooking oil using heterogeneous catalyst: Biodiesel product data and its characterization. Data in Brief, v. 28, 2020. Disponível em: https://doi.org/10.1016/j.dib.2019.104879 RABIE, A. M.; SHABAN, M.; ABUKHADRA, M. R.; HOSNY, R.; AHMED S. A.; NEGM, N. A. Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. Journal of Molecular Liquids, v. 279, 2019. Disponível em: https://doi.org/10.1016/j.molliq.2019.01.096 RAVELO, V. C.; RODRIGUEZ, J. S. Biodiesel production as a solution to waste cooking oil (WCO) disposal. Will any type of WCO do for a transesterification process? A quality assessment. Journal of Environmental Management, v. 228, 2018. Disponível em: https://doi.org/10.1016/j.jenvman.2018.08.106 RAZUKI, A.; KAUS, N. H. M.; SAGADEVANN, S.; SALAEH, S.; IBRAHIM, M. L.; ABDULLAH, M. M. A. B. Revolutionizing biodiesel production: A breakthrough synthesis and characterization of bismuth ferrite nanocatalysts for transesterification of palm and waste cooking oil. Fuel, v. 346, 2023. Disponível em: https://doi.org/10.1016/j.fuel.2023.128413 REZANIA, S.; KORRANI, Z. S.; GABRIS, M. A.; CHO, J.; YADAV, K. K.; PINTO, M. M. S. C.; ALAM, J.; AHAMED, M.; NODEH, H. R. Lanthanum phosphate foam as novel heterogeneous nanocatalyst for biodiesel production from waste cooking oil. Renewable Energy, v. 176, 2021. Disponível em: https://doi.org/10.1016/j.renene.2021.05.060 ROY, T.; SAHANI, S.; MADHU, D.; SHARMA, Y. C. A clean approach of biodiesel production from waste cooking oil by using single phase BaSnO3 as solid base catalyst: Mechanism, kinetics & E-study. Journal of Cleaner Production, v. 265, 2020. Disponível em: https://doi.org/10.1016/j.jclepro.2020.121440 SAADI, A. A.; MATHAN, B.; HE, Y. Biodiesel production via simultaneous transesterification and esterification reactions over SrO–ZnO/Al2O3 as a bifunctional catalyst using high acidic waste cooking oil. Chemical Engineering Research and Design, v. 162, 2020. Disponível em: https://doi.org/10.1016/j.cherd.2020.08.018 SAHABDHEEN, A. B.; ARIVARASU, A. Synthesis and characterization of reusable heteropoly acid nanoparticles for one step biodiesel production from high acid value waste cooking oil - Performance and emission studies. Materials Today: Proceedings, v. 22, 2020. Disponível em: https://doi.org/10.1016/j.matpr.2019.07.249 SAHANI, S.; ROY, T.; SHARMA, Y. C. Smart waste management of waste cooking 45 oil for large scale high quality biodiesel production using Sr-Ti mixed metal oxide as solid catalyst: Optimization and E-metrics studies. Waste Management, v. 108, 2020. Disponível em: https://doi.org/10.1016/j.wasman.2020.04.036 SAHAR; SADAF, S.; IQBAL, J.; ULLAH, I.; BHATTI, H. N.; NOUREN, S.; REHMAN, H. U.; NISAR, J.; IQBAL, M. Biodiesel production from waste cooking oil: An efficient technique to convert waste into biodiesel. Sustainable Cities and Society, v. 41, 2018. Disponível em: https://doi.org/10.1016/j.scs.2018.05.037 SAKTI, S. C. W.; WIJAYA, R. A.; INDRASARI, N.; FAHMI, Z.; WIDATI, A. A.; ABDULLLOH; NURYONO; CHEN, C. H. Magnetic hollow buoyant alginate beads achieving rapid remediation of oil contamination on water. Journal of Environmental Chemical Engineering, v. 9, 2021. Disponível em: https://doi.org/10.1016/j.jece.2020.104935 SANTANA, H. S.; JUNIOR, J. L. S.; TARANTO, O. P. Development of microreactors applied on biodiesel synthesis: From experimental investigation to numerical approaches. Journal of Industrial and Engineering Chemistry, v. 69, 2019. Disponível em: https://doi.org/10.1016/j.jiec.2018.09.021 SHARMA, A.; KODGIRE, P.; KACHHWAHA, S. S. Investigation of ultrasound- assisted KOH and CaO catalyzed transesterification for biodiesel production from waste cotton-seed cooking oil: Process optimization and conversion rate evaluation. Journal of Cleaner Production, v. 259, 2020. Disponível em: https://doi.org/10.1016/j.jclepro.2020.120982 SHARMA, A.; KODGIRE, P.; KACHHWAHA, S. S.; RAGHAVENDRA, H. B.; THAKKAR, K. Application of Microwave Energy for Biodiesel Production using Waste Cooking Oil. Materials Today: Proceedings, v. 5, 2018. Disponível em: https://doi- org.ez357.periodicos.capes.gov.br/10.1016/j.matpr.2018.11.036 SREE, J. V.; CHOWDARY, B. A.; KUMAR, K. S.; ANBAZHAGAN; M. P.; SUBRAMANIAN, S. Optimization of the biodiesel production from waste cooking oil using homogeneous catalyst and heterogeneous catalysts. Materials Today: Proceedings, v. 46, 2021. Disponível em: https://doi.org/10.1016/j.matpr.2020.10.332 SUBRAMANIAM, Y.; MASRON, T. A. The impact of economic globalization on biofuel in developing countries. Energy Conversion and Management: X, v. 10, 2020. Disponível em: https://doi.org/10.1016/j.ecmx.2020.100064 SUZIHAQUE, M. U. H.; SYAZWINA, N.; ALWI, H.; IBRAHIM, U. K.; ABDULLAH, S.; HARON, N. A sustainability study of the processing of kitchen waste as a potential source of biofuel: Biodiesel production from waste cooking oil (WCO). Materialstoday: PROCEEDINGS, V. 63, 2022. Disponível em: https://doi.org/10.1016/j.matpr.2022.04.526 TOPARE, N. S.; PATIL, K. D.; KHEDKAR, S. V. Effects of operating parameters on biodiesel production from waste cooking oil under ultrasonic irradiation. Materials Today: Proceedings, v. 46, 2021. Disponível em: https://doi.org/10.1016/j.matpr.2021.01.379 46 UBRABIO. Biodiesel: aumento da mistura para 12% começa em 1 de março; mais economia para o Brasil. UBRABIO, 2020. Disponível em: https://ubrabio.com.br/2020/02/21/b12-mais-biodiesel-e-mais-brasil/. Acesso em: 10 de fevereiro. de 2021. VIERA, M. S.; BOHRER, S. D.; ROTTA, R. E.; GERBASE, A. E.; FERRÃO, M. F. Aplicação do método da adição padrão para a quantificação de biodiesel em blendas comerciais de biodiesel/diesel. XXIX ENEGEP. Salvador – BA, 2009. Disponível em: https://www.researchgate.net/publication/282442116_Aplicacao_do_Metodo_da_Adi cao_Padrao_para_a_Quantificacao_de_Biodiesel_em_Blendas_Comerciais_de_Bio dieselDiesel. Acesso em 02 de julho de 2023. WEI, H.; WANG, Q.; ZHANG, R.; LIU, M.; ZHANG, W. Efficient biodiesel production from waste cooking oil by fast co-immobilization of lipases from Aspergillus oryzae and Rhizomucor miehei in magnetic chitosan microcapsules. Process Biochemistry, v. 125, 2023. Disponível em: https://doi.org/10.1016/j.procbio.2022.12.025 WU, C.; ZHANG, M.; XIONG, D.; TUO, J.; MA, W.; QIAN, Y. Gas generation from Jurassic coal measures at low mature stage and potential gas accumulation in the eastern Junggar Basin, China. Journal of Natural Gas Science and Engineering, v. 84, 2020. Disponível em: https://doi.org/10.1016/j.jngse.2020.103692 XIA, S.; HU, Y.; CHEN, C.; TAO, J.; YAN, B.; LI, W.; ZHU, G.; CHENG, Z.; CHEN, G. Electrolytic transesterification of waste cooking oil using magnetic Co/Fe–Ca based catalyst derived from waste shells: A promising approach towards sustainable biodiesel production. Renewable Energy, v. 200, 2022. Disponível em: https://doi.org/10.1016/j.renene.2022.10.071 YALCIN, E. Effects of microwave and induction heating on the mechanical and self- healing characteristics of the asphalt mixtures containing waste metal. Construction and Building Materials, v. 286, 2021. Disponóivel em: https://doi.org/10.1016/j.conbuildmat.2021.122965 YUSUFF, A. S.; GBADAMOSI, A. O.; POPOOLA, L. T. Biodiesel production from transesterified waste cooking oil by zinc-modified anthill catalyst: Parametric optimization and biodiesel properties improvement. Journal of Environmental Chemical Engineering, v. 9, 2021. Disponível em: https://doi.org/10.1016/j.jece.2020.104955 ZHANG, W.; WANG, C.; LUO, B.; HE, P.; LI, L.; WU, G. Biodiesel production by transesterification of waste cooking oil in the presence of graphitic carbon nitride supported molybdenum catalyst. Fuel, v. 332, 2023. Disponível em: https://doi.org/10.1016/j.fuel.2022.126309 ZIK, N. A. F. A.; SULAIMAN, S.; JAMAL, P. Biodiesel production from waste cooking oil using calcium oxide/nanocrystal cellulose/polyvinyl alcohol catalyst in a packed bed reactor. Renewable Energy, v. 155, 2020. Disponível em: https://doi.org/10.1016/j.renene.2020.03.144pt_BR
Aparece nas coleções:Trabalhos de Conclusão de Cursos (TCCs)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Ester da Cunha Meira Santos 2023.pdfTCC_Ester_Cunha470.25 kBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons

Ferramentas do administrador