Campus Salvador Dissertações
Use este identificador para citar ou linkar para este item: https://repositorio.ifba.edu.br/jspui/handle/123456789/350
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSantos, Michel Giffoni-
dc.date.accessioned2023-02-04T13:30:37Z-
dc.date.available2023-01-23-
dc.date.available2023-02-04T13:30:37Z-
dc.date.issued2023-01-13-
dc.identifier.citationSANTOS, Michel Giffoni. Compósitos Poliméricos Reforçados por Fibras de Licuri: efeitos de Tratamentos Químicos na Adesão Interfacial. Dissertação ( Mestrado em Engenharia de Materiais) - Instituto Federal de Educação, Ciência e Tecnologia da Bahia, Salvador, 2023.pt_BR
dc.identifier.urihttps://repositorio.ifba.edu.br/jspui/handle/123456789/350-
dc.description.abstractThe growing concern with sustainability foments the development of research regarding to polymer composites reinforced with natural fibers, which represent an ecological alternative to the commonly used synthetic ones. However, natural fiber reinforced polymer composites present obstacles regarding both structural and nonstructural applications, due to their weak fiber/matrix interfacial interaction. To minimize this problem, chemical treatments can be performed to improve adhesion and consequently the technological properties of the composite. In this sense, the objective of this research is to study the effects of chemical treatments in polymer composites reinforced with licuri fibers, using solutions of sodium hydroxide, potassium permanganate and hexane, to improve the interfacial adhesion between the licuri fiber (Syagrus coronata) and the orthophthalic polymeric matrix based on polyester. The composites were made by hand lay-up. The water absorption characteristics of the laminates were obtained by immersion in distilled water for a period of 1800 hours. The mechanical tests were evaluated in terms of tensile, flexural, and Short-Beam properties. Fracture analysis of the samples was performed by scanning electron microscopy (SEM). The results obtained showed that the chemical treatments carried out in the present work are efficient in reducing the moisture absorption of the composites and improving the shear and flexural properties.pt_BR
dc.languageporpt_BR
dc.publisherInstituto Federal de Educação, Ciência e Tecnologia da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectCompósitos Poliméricospt_BR
dc.subjectFibras - Licuript_BR
dc.subjectAdesão interfacialpt_BR
dc.subjectTratamentos químicospt_BR
dc.subjectPropriedades mecânicaspt_BR
dc.subjectPolymer Compositespt_BR
dc.subjectMechanical propertiespt_BR
dc.subjectLicuri fiberspt_BR
dc.subjectInterfacial adhesionpt_BR
dc.subjectChemical treatmentspt_BR
dc.titleCompósitos poliméricos reforçados por fibras de l: efeitos de tratamentos químicos na adesão interfacialpt_BR
dc.typeDissertaçãopt_BR
dc.creator.ID9261253724122110pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9261253724122110pt_BR
dc.contributor.advisor1Leão, Mirtânia Antunes-
dc.contributor.advisor1ID9156822767910160pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9156822767910160pt_BR
dc.contributor.advisor-co1Palma, Aldemiro José Rocha-
dc.contributor.advisor-co1ID2150318332197038pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/2150318332197038pt_BR
dc.contributor.referee1Leão, Mirtânia Antunes-
dc.contributor.referee1ID9156822767910160pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/9156822767910160pt_BR
dc.contributor.referee2Palma, Aldemiro José Rocha-
dc.contributor.referee2ID2150318332197038pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/2150318332197038pt_BR
dc.contributor.referee3Silva, Camila Cruz da-
dc.contributor.referee3ID9899720125654511pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9899720125654511pt_BR
dc.contributor.referee4Cavalcanti, Luiz Antônio Pimentel-
dc.contributor.referee4ID3133485457754481pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/3133485457754481pt_BR
dc.contributor.referee5Nascimento, Rubens Maribondo do-
dc.contributor.referee5ID8671649752936793pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/8671649752936793pt_BR
dc.description.resumoA crescente preocupação com a sustentabilidade fomenta o desenvolvimento de pesquisas em relação aos compósitos poliméricos reforçados com fibras naturais, de forma que eles representam uma alternativa ecológica às comumente empregadas fibras sintéticas. No entanto, os compósitos poliméricos reforçados com fibras vegetais apresentam limitações técnicas no que tangem às aplicações tecnológicas estruturais e não estruturais, decorrente da fraca interação interfacial fibra / matriz. Para minimizar estas limitações, tratamentos químicos podem ser realizados para melhorar a adesão e consequentemente as propriedades tecnológicas de tais compósitos. Neste sentido, este trabalho de pesquisa teve como objetivo principal estudar os efeitos de tratamentos químicos em compósitos poliméricos reforçados por fibras de licuri, com o uso de soluções de hidróxido de sódio, permanganato de potássio e hexano, para a melhoria da adesão interfacial entre a fibra de licuri (Syagrus coronata) e a matriz polimérica ortoftálica a base de poliéster. Os compósitos laminados foram confeccionados por laminação manual. A absorção de água dos laminados foi obtida por imersão em água destilada por um período de 1800 horas. Foram avaliadas as propriedades mecânicas de tração uniaxial, flexão em três pontos e cisalhamento Short-Beam. A análise de fratura das amostras foi realizada por microscopia eletrônica de varredura (MEV). Os resultados obtidos mostraram que os tratamentos químicos executados são eficientes na redução da absorção de umidade dos compósitos e na melhoria das propriedades de cisalhamento e flexão.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentPrograma de Pós-Graduação em Engenharia de Materiais(PPGEM)pt_BR
dc.publisher.programMestrado Profissional em Engenharia de Materiais (PPGEM)pt_BR
dc.publisher.initialsIFBApt_BR
dc.subject.cnpqCNPQ::ENGENHARIASpt_BR
dc.relation.referencesABDELMOULEH M., BOUFIS S., BELGACEM M.N. DUFRESNE A. Short naturalfibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibre loading. Compos Sci Technol, 67 (7–8),1627–39, 2007. ABILASH N., SIVAPRAGASH M., Environmental benefits of eco-friendly natural fiber reinforced polymeric composites materials, 2013. International Journal of Application or Innovation in Engineering & Management, Volume 2, 2319e4847. AGARWAL R., SAXENA N.S., SHARMA K.B., THOMAS S., SREEKALA M.S., Activation energy and crystallization kinetics of untreated and treat oil palm fibre reinforced phenol formaldehyde composites, Materials Science & Engineering. V.277, p.77-82, 2000. AKIL, H.M., CHENG, L.W., ISHAK, Z.A.M., BAKAR, A.A., RAHMAN, M.A.A.,Water absorption study on pultruded jute fibre reinforced unsaturated polyester composites.Compos. Sci. Technol. 69 (11e12), 1942-1948, 2009. AL-QURESHI H.A., Automobile leaf springs from composite materials. J Mater Process Technol, 118(1-3), 58–61, 2001. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D2344. Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates. Philadelphia: ASTM International, 2016. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D3039. Standard Test Methods for Tensile Properties of Polymer Matrix Composites. Philadelphia: ASTM, 2017. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D790. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM, 2007. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D570. Standard Test Method for Water Absorption of Plastics. ASTM, 2018. AQUINO, E.M.F.; SILVA, R.V. Curaua Fiber: A New Alternative to Polymeric Composites. Journal of Reinforced Plastics and Composites, Vol.27; No.103 (2008). AQUINO R. C. M. P. Desenvolvimento de compósitos de Fibras de Piaçava da especie Attlea Funifera e Matriz de Resina, 2003, Campo dos Goitacazes - RJ: UENF. Tese. 2003. ARABPOUR A, SHOCKRAVI A, REZANIA H, FARAHATI R. Investigation of anticorrosive properties of novel silane-functionalized polyamide/GO nanocomposite as steel coatings. Surface and Interface Analysis, 18 (14), 2020. ARMENTIA S. L., ENCISO B., MOKRY G., ABENOJAR J., MARTINEZ M. A., Novel application of a thermoplastic composite with improved matrix-fibre interface.Journal of Materials Research Technology. 8 (6), 5536-5547, 2019. ASHBY M. F., Technology in the 1990s: advanced materials and predictive design. Philos Trans R Soc Lond A, 322:393–407, 1987. AZWA, Z.N., YOUSIF, B.F., MANALO, A.C., KARUNASENA, W., A review on the degradability of polymeric composites based on natural fibres.Mater. Des. 47, 424-442, 2013. BALASUBRAMANIAN K., SULTAN M.T.H., RAJESWARI N. Manufacturing techniques of composites for aerospace applications. Sustainable Composites for Aerospace Applications, 2018, 55–67. http://dx.doi.org/10.1016/b978-0-08-102131-6.00004-9. BLEDZKI, A. K.; GASSAN, J. Composites Reinforced With Cellulose Based Fibers. Prog. Polym. Sci.. India: Elsevier Science. v.24, p.221-272, 1999. BURGUEÑO R., QUAGLIATA M. J., MOHANTY A. K., MEHTA G., DRZAL L. T., MISRA M., 2004. Load-bearing natural fiber composite cellular beams and panels. Compos. Appl. Sci. Manuf. 35, 645e656. https://doi.org/10.1016/j.compositesa.2004.02.012. BAVAN D. S., KUMAR D. M., Potential Use of Natural Fibre Composite Materials in India, 2010. J. Reinforced Plastics Compos., Volume 29, 3600–3613. doi: 10.1177/0731684410381151. BENIN S.R., KANNAN S., BRIGHT R. J., MOSES A. J. A review on mechanical characterization of polymer matrix composites & its effects reinforced with various natural fibres, Material Today: Proceedings, Volume 33, Pages 789-805, 2020. BHARDWAJ S., 2017. Natural fibre composites: an opportunity for farmers. Int. J. Pure Appl. Biosci. 5, 509e514. BLEDZKI A.K., GASSAN J. Composites reinforced with cellulose based fibres. Prog Polym Sci, 24(2), 221–74, 1999. BOGOEVA-GACEVA G., AVALLA M., MALINCONICO M., BUZAROVSKA A., GROZDANOV A., GENTILE G., et al., 2007. Natural fiber eco-composites. Polym. Compos. 28 (1), 98_107. Available from: https://doi.org/10.1002/pc.20270. CALLISTER W. D., RETHWISCH D. G. Ciência e engenharia de materiais: uma introdução. 10ª Ed., Rio de Janeiro: LTC, 2021. CHAND N., FAHIM M., 1 - Natural fibers and their composites, Editor(s): Navin Chand, Mohammed Fahim, In Woodhead Publishing Series in Composites Science and Engineering, Tribology of Natural Fiber Polymer Composites (Second Edition), Woodhead Publishing, 2021, Pages 1-59, ISBN 9780128189832, https://doi.org/10.1016/B978-0-12-818983-2.00001-3. CHAWLA K. K., Composite Materials: Science and Engineering, 3ª ed, New York: Springer, 2012. DAVIM J.P., REIS P., ANTONIO C.C., Experimental study of drilling glass fiber reinforced plastics (GFRP) manufactured by hand lay-up. Compos Sci Technol, 2004, 64(2), 289–97. DHAKAL H. N., ISMAIL S. O., 2021a, 1 - Introduction to composite materials. In Woodhead Publishing Series in Composites Science and Engineering, Sustainable Composites for Lightweight Applications, Woodhead Publishing, Pages 1-16. ISBN 9780128183168, 2021. https://doi.org/10.1016/B978-0-12-818316-8.00001-3. DHAKAL H. N., ISMAIL S. O., 2021b. 3 - Lightweight composites, important properties and applications. In Woodhead Publishing Series in Composites Science and Engineering, Sustainable Composites for Lightweight Applications, Woodhead Publishing, Pages 53-119. https://doi.org/10.1016/B978-0-12-818316-8.00006-2. DHAKAL H. N., ISMAIL S. O., 2021c. 5 - Testing and damage characterisation of biocomposite materials. In Woodhead Publishing Series in Composites Science and Engineering, Sustainable Composites for Lightweight Applications, Woodhead Publishing, Pages 179-1227. https://doi.org/10.1016/B978-0-12-818316-8.00007-4. DHAKAL, H.N., MACMULLEN, J., ZHANG, Z., 2015. In: Graham-Jones, J., Summerscales, J. (Eds.), Marine applications of advanced fibre-reinforced composites, 5. Woodhead Publishing. Chapter, pp. 103e122. DHAKAL H.N., SAIN M., 2019. Enhancement of mechanical properties of flaxepoxy composite with carbon fibre hybridisation for lightweight applications. Materials 13 (1), 109. DHAKAL H.N., SKRIFVARS M., ADEKUNLE A., ZHANG Z.Y., Falling weight impact response of jute/methacrylated soybean oil bio-composites under low velocity impact loading. Compos. Sci. Technol. 92, 134-141, 2014. DHAKAL H.N., ZHANG Z.Y., GUTHRIE R., MACMULLEN J., BENNETT N., Development of flax/ carbon fibre hybrid composites for enhanced properties. Carbohydr. Polym. 96 (1), 1-8, 2013. DHAKAL H.N., ZHANG Z.Y., RICHARDSON M.O.W., 2007. Effect of water absorption on the mechanical properties of hemp fiber reinforced unsaturated polyester composites. Compos. Sci. Technol. 67 (7-8), 1674_1683. Available from: https://doi.org/10.1016/j.compscitech.2006.06.019. DOAN T.T.L., GAO S.L., MADER E. Jute/polypropylene composites I. Effect of matrix modification. Compos Sci Technol, 66(7–8), 952–63, 2006. DRZAL L. T., RICH M. J., LLOYD P. F., Adhesion of graphite fibers to epoxy matrices: I. The role of fiber surface treatment. The Journal of Adhesion. 16(1), 1-30, 1983. https://doi.org/10.1080/00218468308074901. EDIE D. D., BUCKLEY J. D., Carbon –Carbon Materials and Composites, 1ª ed., William Andrew, 1993. EDWARDS, H.G.M.; FARWELL, D.W.; WEBSTER, D. FT Raman microscopy of untreated natural p lant fibres. Spectrochimica Acta, v.53, Part A, p. 2383 - 2392,1997. EGBO M. K., A fundamental review on composite materials and some of their applications in biomedical engineering, Journal of King Saud University - Engineering Sciences, ISSN 1018-3639, 2020. https://doi.org/10.1016/j.jksues.2020.07.007. FAKIROV S., BHATTACHARYYA D. Engineering biopolymers: homopolymers, blends and composites. Munich Hanser Publishers; 2007, ISBN: 978-1-56990- 405-3. FARUK O., BLEDZKI A. K., FINK H. P., SAIN M., 2012. Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science, volume 37, Pages 1552-1596 FREDERICK T.W., NORMAN W., Natural Fibers Plastics and Composites, Kluwer Academic Publishers, New York, 2004. GEETHAMMA, V. G.; K. MATHEW, T.; LAKSHMINARAYANAN R; THOMAS, S. Composite of short coir fibres and natural rubber: effect of chemical modification, loading and orientation of fibre.Polymer. v.39, n.6 -7, p.1483 - 1491, 1998. HAAMEEM J.A.M., ABDUL MAJID M.S., AFENDI M., MARZUKI H.F.A, FAHMI I., GIBSON A.G., Mechanical properties of Napier grass fibre/polyester composites.Compos Struct, 136, 1-10, 2016. https://doi.org/10.1016/j.compstruct.2015.09.051. HILL, C.A.S., KHALIL, H.P.S.A.; HALE, M.D. A study of the potential of acetylation to improve the properties of plant fibres. Industrial Crops and Products v.8, p.53-63, 1998. HSISSOU R., SEGHIRI R., BENZEKRI Z., HILALI M., RAFIK M., ELHARFI A., Polymer composite materials: A comprehensive review, Composite Structures, Volume 262, 113640, ISSN 0263-8223, 2021. https://doi.org/10.1016/j.compstruct.2021.113640. HUANG S., FU Q., YAN L., KASAL B., Characterization of interfacial properties between fibre and polymer matrix in composite materials – A critical review, Journal of Materials Research and Technology, Volume 13, Pages 1441-1484, ISSN 2238-7854, 2021. https://doi.org/10.1016/j.jmrt.2021.05.076. HUDA M.S., DRZAL L.T., MOHANTY A.K., MISHRA M., 2008. Effect of fiber surfacetreatments on the properties of laminated biocomposites from poly (lactic acid) (PLA) and kenaf fibers. Compos. Sci. Technol. 68 (2), 424_432. Available from: https://doi.org/10.1016/j.compscitech.2007.06.022. JOLLIVET T., PEYRAC C., LEFEBVRE F., Damage of composite materials. Procedia Eng., 66, 746 –758, 2013. JOSEPH P.V., JOSEPH K., THOMAS S., PILLAI C.K.S., PRASAD V.S., GROENINCKX G., et al. The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos Part A –Appl Sci Manuf, 34(3):253–66, 2003. KABIR M.M., WANG H., LAU K.T., CARDONA F. Chemical treatments on plantbased natural fibre reinforced polymer composites: An overview. Composites: Part B, 43, 2883 –2892, 2012. KELLEY, S.S.; ROWELL, R.M., DAVIS, M.; JURICH, C.K.; IBACH, R.Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry. Biomass & Bioenergy, v.27, n.1, p.77-88. 2004. KHALIL, H.P.S.A.; ISMAIL, H.; ROZMAN, H.D.; AHMAD, M.N. The effect of acetylation on interfacial shear strength between plant fibres and various matrices. European Polymer Journal, 2001. v.37, n.5, p.1037-1045. KHEDARI, J., WATSANASATHAPORN, P.; HIRUNLABH, J. Development of fibrebased soil –cement block with low thermal conductivity. Cement and Concrete Composites v.27 n.1, p.111-116, 2005. KIM J-K, MAI Y-W. Characterization of interfaces. In: Engineered interfaces in fiber reinforced composites. 1ª ed., Elsevier Science, p. 5-41, 1998b. KIM J-K, MAI Y-W. Introduction. In: Engineered interfaces in fiber reinforced composites. 1ª ed., Elsevier Science, p. 1-4, 1998a. LEÃO M. A. Compósitos Poliméricos A Base De Fibras De Licuri: Efeitos Da Hibridização E Do Envelhecimento Ambiental Acelerado. Tese (Doutorado em Engenharia dos Materiais) –Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal do Rio Grande do Norte. Rio Grande do Norte, p. 190, 2013. LEÃO M. A. Fibras De Licuri: Um Reforço Alternativo De Compósitos Poliméricos. Tese (Mestrado em Engenharia Mecânica) – Programa de PósGraduação em Engenharia Mecânica, Universidade Federal do Rio Grande do Norte. Rio Grande do Norte, p. 109, 2008. LEONARD Y.M., MARTIN P.A. Chemical modification of hemp, sisal, jute and kapok fibres by alkalisation. Appl Polym Sci, 84 (12), 2222–34, 2002. Licuri. CERRATINGA, 2022. Disponível em: < https://www.cerratinga.org.br/especies/licuri/>. Acesso em: 16 de outubro de 2022. LIU D., SONG J., ANDERSON D.P. et al., Bamboo fiber and its reinforced composites: structure and properties. Cellulose 19, 1449–1480, 2012. https://doi.org/10.1007/s10570-012-9741-1. LORENZI, H. Geonoma. In: Lorenzi, H.; Noblick, L.R.; Kahn, F. & Ferreira, E. Flora brasileira: Arecaceae (Palmeiras). Instituto Plantarum, Nova Odessa, pp. 214-255, 2010. MALLICK P.K., Fiber-Reinforced Composites. United States of America: Taylor & Francis Group, 2008. MANO, E. B., MENDES L. C. Introdução a Polímeros, 2ª Ed., São Paulo: Blücher Ltda., 1999. MD. SAIFUL ISLAM, MD. MOYNUL ISLAM, 3 - Sustainable reinforcers for polymer composites, Editor(s): Md. Rezaur Rahman, In Woodhead Publishing Series in Composites Science and Engineering, Advances in Sustainable Polymer Composites, Woodhead Publishing, 2021, Pages 59-88, ISBN 9780128203385, https://doi.org/10.1016/B978-0-12-820338-5.00003-5. MOHANTY A.K., MISRA M., HINRICHSEN G. Biofibres, biodegradable polymers and biocomposites: an overview. Macromol. Mater. Eng. 266-277 (1), 1-24, 2000. MWAIKAMBO Y.M., ANSELL M.P. The effect of chemical treatment on the properties of hemp, sisal, jute and kapok fibres for composite reinforcement. Angew Makromol Chem,272, 108–16. 1999. Natural Fiber Composites (NFC) Market Size, Share & Trends Analysis Report by Raw Material, By Matrix, By Technology, By Application, And Segment Forecasts, 2018 –2024. Grandviewresearch, 2018. Disponível em: < https://www.grandviewresearch.com/industry-analysis/natural-fiber-compositesmarket >. Acesso em: 18 de janeiro de 2021. NORDIN N. A., YUSSOF F. M., KASOLANG S., SALLEH Z., AHMED A. M., Wear rate of natural fibre: long kenaf composite. Procedia Eng. 68, 145-151, 2013. OUSHABI A., SAIR S., OUDRHIRI HASSANI F., ABBOUD Y., TANANE O., EL BOUARI A., The effect of alkali treatment on mechanical, morphological, and thermal properties of date palm fibers (DPFs): study of the interface of DPF - Polyurethane composite. South African Journal of Chemical, 23, 2017. PICKERING K. L., EFENDY M. A., LE T. M., A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A Applied Science Manufacturing, 83, 98-112, 2016. https://doi.org/10.1016/j.compositesa.2015.08.038. PLUEDDEMANN E.P., Silane Coupling Agents, second ed., New York, Plenum Press, 1991. RAJAK D. K., PAGAR D. D., KUMAR R., PRUNCU C. I., Recent progress of reinforcement materials: a comprehensive overview of composite materials.2019. Journal of Materials Research and Technology, Volume 8, Issue 6, Pages 6354-6374, ISSN 2238-7854, 2019. https://doi.org/10.1016/j.jmrt.2019.09.068. RAZALI N., SULTAN M.T.H., MUSTAPHA F., YIDRIS N., ISHAK M.R., Impact damage on composite structures - a review. Int. J. Eng. Sci., 3 (7), 8 - 20. 2014. REDDY R.A., YOGANANDAM K., MOHANAVEL V., Effect of chemical treatment on natural fiber for use in fiber reinforced composites –Review. Materials Today: Proceedings, 33, 2996 –2999, 2020. ROMANOWICZ P., MUC A., Estimation of notched composite plates fatigue life using residual strength model calibrated by step-wise tests. Materials 11, 1 - 18. 2018. SABA N., JAWAID M., A review on thermomechanical properties of polymers and fibers reinforced polymer composites. Journal of Industrial Engineering Chemistry, 67:1–11, 2018. SAHEB D.N., JOG J.P. Natural fibre polymer composites: a review. Adv Polym Tech, 18(4),351–63,1999. SANJAY M.R., MADHU P., JAWAID M., SENTHAMARAIKANNAN P., SENTHIL S., PRADEEP S., 2018. Characterization and properties of natural fiber polymer composites: a comprehensive review.J. Clean. Prod. 172 (1), 566_581. Available from: https://doi.org/10.1016/j.jclepro.2017.10.101. SGRICCIA N., HAWLEY M.C., MISRA M. Characterization of natural fibre surfaces and natural fibre composites. Compos Part A – Appl Sci Manuf, 39(10),1632–7, 2008. SHACKELFORD J. F., Ciência dos materiais, 6ª ed., São Paulo: Pearson Prentice Hall, 2008. STAAB G. H., 1 - Introduction to composite materials, Editor(s): George H. Staab, Laminar Composites (Second Edition), Butterworth-Heinemann, 2015, Pages 1-16, ISBN 9780128024003, https://doi.org/10.1016/B978-0-12-802400-3.00001-5. STEWART R., Thermoplastic composites e recyclable and fast to process. Reinf. Plast. 55, 22-28, 2011. SYDENSTRIKER, T. H. D.; MOCHNACZ, S.; AMICO, S. C. Pull-out and the evaluations in sisal -reinforced polyester biocomposites. Polymer Testing. Elsevier, v. 22, p. 375-380, 2003. TAJ S., ALI M., KHAN S. Review: natural fibre reinforced polymer composites. Proc Pak Acad Sci, 44(2),129–44, 2007. TSAI S. W., HAHN H.Y., Introduction to Composite Materials, 1ª ed., USA: CRC Press, 1980. VAN D. J. E. G., 2009. Environmental benefits of natural fibre production and use. Proceedings of the Symposium on Natural Fibres 3-17. VAXMAN A., NARKIS M., SIEGMANN A., KENIG S. Void formation in short-fiber thermoplastic composites. Polym Compos, 10(6):449–53, 2004. VINSON J.R., CHOU T.W. Composite materials and their use in structures. United States: Halsted Press, 1975. WANG B., PANIGRAHI S., TABIL L., CRERAR W. Pre-treatment of flax fibres for use in rotationally molded biocomposites. J Reinf Plast Compos, 26(5), 447–63, 2007. WANG B., ZHONG S., LEE T.L., FANCEY K.S., MI J., Non-destructive testing and evaluation of composite materials/structures: a state-of-the-art review. Adv. Mech. Eng., 12 (4), 1- 28, 2020. YOUNG, R.A. Fibers (Vegetable). Kirk-Otthmer encyclopedia of chemical Tecnology 4th. Ed. Volume 10. J. Wiley & Sons, Inc. pp.727-744, 1994. ZAKARIA S., POH L.K. Polystyrene-benzoylated EFB reinforced composites. Polym Plast Technol Eng, 41(5), 951–62, 2002. ZHENG S., BELLIDO-AGUILAR D. A., HU J., HUANG Y., ZHAO X., WANG Z., et al. Waterborne bio-based epoxy coatings for the corrosion protection of metallic substrates. Progress in Organic Coatings, 136:105265, 2019.pt_BR
Aparece nas coleções:Dissertações

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Michel Giffoni_PPGEM_dissert.pdfDissertação30.5 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons

Ferramentas do administrador