Use este identificador para citar ou linkar para este item:
https://repositorio.ifba.edu.br/jspui/handle/123456789/188
metadata.dc.type: | Dissertação |
Título: | Estudo da sensibilidade e tolerância ao aumento da concentração de nutrientes em larvas de corais |
Título(s) alternativo(s): | Study of sensitivity and tolerance to increased nutrient concentration in coral larvae |
metadata.dc.creator: | Silva, Andressa Tavares |
metadata.dc.contributor.advisor1: | Silva, Allison Gonçalves |
metadata.dc.contributor.advisor-co1: | Hackradt, Fabiana Cezar Félix |
metadata.dc.contributor.referee1: | Marangoni, Laura Fernandes de Barros |
metadata.dc.contributor.referee2: | Bandeira, Marcus Luciano Souza de Ferreira |
metadata.dc.contributor.referee3: | Sasaki, Silvio Tarou |
metadata.dc.description.resumo: | Os corais são organismos sensíveis às mudanças climáticas. Aumento na temperatura e na concentração de nutrientes, efeitos de impacto local e global podem provocar diversas disfunções nestes animais, comprometendo todo o ecossistema recifal. O objetivo deste trabalho foi estudar os efeitos do aumento de nutrientes e de temperatura em larvas de corais. Foi realizado um estudo bibliográfico a fim de observar as respostas à estressores ambientais em outros locais do mundo; em seguida analisou-se nitrato, nitrito, amônio, fosfato e clorofila a de amostras de aguas de poças ao longo do recife de Coroa Vermelha e posterior simulação dos valores mínimo e máximo dos nutrientes encontrados nas poças em larvas do coral Agaricia humilis em diferentes temperaturas. Por fim foi realizada a análise de peroxidação lipídica a fim de buscar evidencias de estresse oxidativo nas larvas. Observou-se que os nutrientes nitrogenados, 46 μmol L-1, para amônia e 8,5 μmol L-1, para o nitrato, e a clorofila a apresentaram altos valores no período seco (verão), devido provavelmente ao aumento do aporte continental nesta época do ano, devido ao aumento do turismo na região. As larvas submetidas aos tratamentos na temperatura mais alta (32º) apresentaram as maiores taxas de mortalidade, cerca de 78% e as maiores taxas de estresse oxidativo ocorreram nas larvas sobreviventes que foram submetidas aos tratamentos de baixa temperatura e maiores concentrações de nutrientes. Os resultados apontados neste trabalho demonstram a importância do monitoramento de corais para avaliação dos efeitos de estressores ambientais nos recifes. Foi evidenciado que o aumento de temperatura nos oceanos pode aumentar as taxas de mortalidade nos corais, enquanto o aumento de nutrientes, ainda que em temperaturas mais brandas (26ºC) pode provocar estresse oxidativo. |
Resumo: | Corals are organisms sensitive to climate change. Increase in temperature and nutrient concentration, local and global impact effects can cause several dysfunctions in these animals, compromising the entire reef ecosystem. The objective of this work was to study the effects of increased nutrients and temperature on coral larvae. A study was carried out bibliographic in order to observe responses to environmental stressors in other parts of the world; in Then, nitrate, nitrite, ammonium, phosphate and chlorophyll a from samples of water from puddles were analyzed. along the Coroa Vermelha reef and subsequent simulation of the minimum and maximum values of the nutrients found in pools in Agaricia humilis coral larvae at different temperatures. Finally, the analysis of lipid peroxidation was performed in order to seek evidence of stress. oxidative in the larvae. It was observed that the nitrogen nutrients, 46 μmol L-1, for ammonia and 8.5 μmol L-1, for nitrate, and chlorophyll a showed high values in the dry period (summer), due to probably due to the increase in the continental contribution at this time of year, due to the increase in tourism in the region. The larvae submitted to the treatments at the highest temperature (32º) presented the highest mortality rates, about 78% and the highest rates of oxidative stress occurred in surviving larvae that were submitted to low temperature treatments and higher nutrient concentrations. The results indicated in this work demonstrate the importance of coral monitoring to assess the effects of environmental stressors on reefs. He was evidence that the increase in temperature in the oceans can increase mortality rates in corals, while the increase in nutrients, even at milder temperatures (26ºC) can cause oxidative stress. |
Palavras-chave: | Agaricia humilis Agaricia humilis Ecossistemas recifais Reef ecosystems Espécies reativas de oxigênio Reactive species of oxygen Defesas antioxidantes Antioxidant defenses LPO LPO |
metadata.dc.subject.cnpq: | CNPQ::CIENCIAS BIOLOGICAS::ECOLOGIA |
metadata.dc.language: | por |
metadata.dc.publisher.country: | Brasil |
Editor: | Instituto Brasileiro de Informação em Ciência e Tecnologia |
metadata.dc.publisher.initials: | IFBA |
metadata.dc.publisher.department: | Programa Pós-Graduação em Ciências e Tecnologias Ambientais (PPGCTA) |
metadata.dc.publisher.program: | Mestrado em Ciências e Tecnologias Ambientais (PPGCTA) |
Citação: | ATKINSON, M. J.; FALTER, J. L. Coral reefs. In ‘‘Biogeochemistry of Marine Systems’’ (Black, K., and Shimmield, G., eds.). pp. 40–64, 2003. 22 BÉRAUD, E.; GEVAERT, F.; ROTTIER, C.; FERRIER-PAGÈS, C. The response of the scleractinian coral Turbinaria reniformis to thermal stressdepends on the nitrogen status of the coral holobiont. The Journal of Experimental Biology 216, 2665-2674. 2013. CAPONE, D. G.; DUNHAM, S. G.; HORRIGAN, S. G.; DUGUAY, L. E. Microbial nitrogen transformations in shallow, unconsolidated carbonate sediments. Marine Ecology Progress Series 80:75–88, 1992. CASTRO, C. B. e; ZILBERBERG, C. Recifes brasileiros, sua importância e conservação. In Conhecendo os recifes brasileiros: Rede de pesquisas Coral Vivo, Zilberberget al. Rio de Janeiro, Museu Nacional, UFRJ, 2016. CLAVIER, J.; BOUCHER, G.; CHAUVAUD, L.; FICHEZ, R.; CHIFFLET, S. Benthic response to ammonium pulses in a tropical lagoon: implications for coastal environmental processes. Journal of Experimental Marine Biology and Ecology 316, 231– 241, 2005. CORREIA, M. D. Ecossistemas marinhos: recifes, praias e manguezais. Maceió: EDUFAL, 2005. CROSSLAND, C. J. Dissolved nutrients in coral reef waters. Em ‘‘Perspective on Coral Reefs’’. (Barnes, D. J., ed.). Brian Clouston publisher/AIMS, Canberra. pp. 56–68, 1983. DUCKWORTH, C. G.; PICARIELLO, C. R.; THOMASON, R. K.; PATEL, K. S.; BIELMYER-FRASER, G. K. Responses of the sea anemone, Exaiptasiapallida, to ocean acidification conditions and zinc or nickel exposure. Aquatic Toxicology 182, 120–128, 2017. DUNN, J. G.; SAMMARCO, P. W.; LAFLEUR JR, G. Effects of phosphate on growth and skeletal density in the scleractinian coral Acropora muricata: A controlled experimental approach. Journal of Experimental Marine Biology and Ecology 411, 34–44, 2012. FAXNELD, S.; JORGENSEN, T. L.; TEDENGREN, M. Effects of elevated water temperature, reduced salinity and nutrient enrichmenton the metabolism of the coral Turbinaria mesenterina. Estuarine, Coastal and Shelf Science 88, 482-487, 2010. 23 FERRIER-PAGÈS, C.; GATTUSO, J. P.; DALLOT, S.; JAUBERT, J. Effect of nutrient enrichment on growth and photosyntesis of the zooxanthellate coral stylophora pistillata. Coral Reefs 19, 103-113, 2000. FLEURY, B. G.; COLL, J. C.; TENTORI, E.; DUQUESNE, S.; FIGUEIREDO, L. Effect of nutrient enrichment on the complementary (secondary)metabolite composition of the soft coral Sarcophytonehrenbergi (Cnidaria: Octocorallia: Alcyonaceae) of the Great Barrier Reef. Marine Biology 136, 63-68, 2000. FONSECA, J. da S.; MARANGONI, L. F. de B.; MARQUES, J. A.; BIANCHINI, A. Effects of increasing temperature alone and combined with copper exposure on biochemical and physiological parameters in the zooxanthellate scleractinian coral Mussismilia harttii. Aquatic Toxicology, 2017. GARDNER, S. G.; RAINA, J.; NITSCHKE, M. R.; NIELSEN, D. A.; STAT, M.; MOTTI, C. A.; RALPH, P. J.; PETROU, K. A multi-trait systems approach reveals a response cascade to bleaching in corals. BMC Biology 15:117, 2017. GEGNER, H. M.; ZIEGLER, M.; RADECKER, N.; BUITRAGO-LOPEZ, C.; ARANDA, M.; VOOLSTRA, C. R. High salinity conveys thermotolerance in the coral model Aiptasia. Biology Open 6, 1943-1948, 2017. GRANT, A. J.; GRAHAM, K.; FRANKLAND, S.; HINDE, R. Effect of copper on algal-host interactions in the symbioticcoral Plesiastrea versipora. Plant Physiology and Biochemistry 41, 383–390, 2003. HAWKINS, T. D.; DAVY, S. K. Nitric oxide and coral bleaching: is peroxynitrite generation required for symbiosis collapse? The Journal of Experimental Biology 216, 3185-3188, 2013 HIGUCHI, T.; YUYAMA, I.; NAKAMURA, T. The combined effects of nitrate with high temperature and high lightintensity on coral bleaching and antioxidant enzyme activities. Regional Studies in Marine Science 2, 27–31, 2015. 24 HOLMES, G; JOHNSTONE, R. W. The role of coral mortality in nitrogen dynamics on coral reefs. Journal of Experimental Marine Biology and Ecology 387: 1-8, 2010. HUMANES, A.; NOONAN, S. H. C.; WILLIS, B. L.; FABRICIUS, K. E.; NEGRI, A. P. Cumulative Effects of Nutrient Enrichmentand Elevated Temperature Compromise theEarly Life History Stages of the Coral Acroporatenuis. Plos One, August 30, 2016. KELLY, J. R. Chapter 10. Nitrogen Effects on Coastal Marine Ecosystems. Nitrogen in the Environment: Sources, Problems, and Management, 2008. KOOP, K.; BOOTH, D.; BROADBENT, A.; BRODIE, J.; BUCHER, D.; CAPONE, D.; COLL, J.; DENNISON, W.; ERDMANN, M; HARRISON, P.; HOEGH-GULDBERG, O.; HUTCHINGS, P.; JONES, G. B.; LARKUM, A. W. D.; O'NEIL, J.; STEVEN, A.; TENTORIS, E.; WARD, S.; WILLIAMSON, J.; YELLOWLEES, D. ENCORE: the effect of nutriente enrichment on coral reefs. Synthesis of results and conclusions. Marine Pollution Bulletin Vol. 42, No 2, pp. 91-120, 2001. KTEIFAN, M.; WAHSHA, M.; AL-HORANI, F. A. Assessing stress response of Stylophora pistillata towards oil and phosphate pollution in the Gulf of Aqaba, using molecular and biochemical markers. Chemistry and Ecology, Vol. 33, No. 4, 281–294, 2017. KUNTZ, N. M.; KLINE, D. I.; SANDIN, S. A.; ROHWER, F. Pathologies and mortality rates caused by organiccarbon and nutrient stressors in three Caribbeancoral species. Marine Ecology Progress Series. Vol. 294: 173–180, 2005. LESSER, M. P. Oxidative stress in marine environments: biochemistry and physiological ecology. Annual Review of Physiology 68, 253-278, 2006. LEVY, O.; ACHITUV, Y.; YACOBI, Y. Z.; STAMBLER, N.; DUBINSKY, Z. The impact of spectral composition and light periodicity on the activity of two antioxidante enzymes (SOD and CAT) in the coral Favia favus. Journal of Experimental Marine Biology and Ecology 328, 35 – 46, 2006. MAIN, W. P. L.; ROSS, C.; BIELMYER, G. K. Copper accumulation and oxidative stress in the sea anemone, Aiptasia pallida, after waterborne copper exposure. Comparative Biochemistry and Physiology, Part C 151216–221, 2010. 25 MARANGONI, L. F. de B.; MARQUES, J. A.; BIANCHINI, A. Fisiologia de corais: a simbiose coral-zooxantela, o fenômeno de branqueamento e o processo de calcificação. In Conhecendo os recifes brasileiros: Rede de pesquisas Coral Vivo, Zilberberget al. Rio de Janeiro, Museu Nacional, UFRJ, 2016. MARANGONI, L. F. de B.; MARQUES, J. A.; DUARTE, G. A. S.; PEREIRA, C. M.; CALDERON, E. N.; CASTRO, C. B. e; BIANCHINI, A. Copper effects on biomarkers associated with photosynthesis, oxidative status and calcification in the Brazilian coral Mussismilia harttii (Scleractinia, Mussidae). Marine Environmental Research 130, 248- 257, 2017. MARQUES, J. A; MARANGONI, L. F. de B.; BIANCHINI, A. Combined effects of seawater acidification and copper exposure on the symbiont-bearing foraminifer Amphistegina gibbosa. Coral Reefs 36, 489–501, 2017. MEJDOUB, Z.; FAHDE, A.; LOUFTI, M.; KABINE, M. Oxidative stress responses of the mussel Mytilusgallo provincialis exposed to emissary’s pollution on coastal areas of Casablanca. Ocean & Coastal Management 136: 95-103, 2017. MUNIZ-ANGUIANO, D.; VERDUZCO-ZAPATA, M.; LINAN-CABELLO, M. A. Factores asociados a la respuesta de Pocillopora spp. (Anthozoa: Scleractinia) durante um proceso de restauración em la costa del Pacífico mexicano. Revista de Biología Marina y Oceanografía 52, N°2: 299-310, 2017. NORDEMAR, I.; NYSTROM, M.; DIZON, R. Effects of elevated seawater temperature and nitrate enrichmenton the branching coral Porites cylindrical in the absence of particulate food. Marine Biology 142, 669–677, 2003. LESSER, M. P. Oxidative stress in marine environments: biochemistry and physiological ecology. Annual Review of Physiology 68, 253-278, 2006. LIVINGSTONE, D. R. Contaminant-stimulated Reactive Oxygen Species Production and Oxidative Damage in Aquatic Organisms. Marine Pollution Bulletin, 2001. LUSHCHAK, V. L. Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions 224: 164-175, 2014. 26 O’NEIL, J. M; CAPONE, D. A. Chapter 21: Nitrogen Cycling in Coral Reef Environments. Em Nitrogen in the Marine Environment, 2ª edição, Elsevier, 2008. OAKLEY, C. A.; DURAND, E.; WILKINSON, S. P.; PENG, L.; WEIS, V. M.; GROSSMAN, A. R.; DAVY, S. K. Thermal shock induces host proteostasis disruption and endoplasmic reticulum stress in the model symbiotic cnidarian Aiptasia. Journal of Proteome Research 16, 2121−2134, 2017. OLSEN, K.; PAUL, V. J.; ROSS, C. Direct effects of elevated temperature, reduced pH, and the presence of macroalgae (Dictyota spp.) on larvae of the Caribbean coral Porites astreoides. Bulletin Marine Science. 91(2):255–270. 2015 ORBEA, A.; GONZÁLEZ-SOTO, N.; LACAVE, J. M.; BARRIO, I.; CAJARAVILLE, M. P. Developmental and reproductive toxicity of PVP/PEI-coated silver nanoparticles to zebrafish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 199: 59- 68, 2017. PATEL, P. P.; BIELMYER-FRASER, G. K. The influence of salinity and copper exposure on copper accumulationand physiological impairment in the sea anemone, Exaiptasia pallida. Comparative Biochemistry and Physiology, Part C 168, 39–47, 2015. PRAZERES, M. de F.; MARTINS, S. E.; BIANCHINI, A. Biomarkers response to zinc exposure in the symbiont-bearing foraminifer Amphistegina lessonii (Amphisteginidae, Foraminifera). Journal of Experimental Marine Biology and Ecology 407, 116–121, 2017. ROSIC, N.; KANIEWSKA, P.; CHAN, C-K, K.; LING, E. Y. S.; EDWARDS, D.; DOVE, S.; HOEGH-GULDBERG, O. Early transcriptional changes in the reef-building coral Acropora aspera in response to thermal and nutrient stress. BMC Genomics 15-1052, 2014. SCHWARZ, J. A.; MITCHELMORE, C. L.; JONES, R.; O'DEA, A.; SEYMOUR, S. Exposure to copper induces oxidative and stress responses and DNA damage in the coral Montastraea franksi. Comparative Biochemistry and Physiology, Part C 157, 272–279, 2013. 27 SIDDIQUI, S.; BIELMYER-FRASER, G. K. (a); Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and copper exposure. Aquatic Toxicology 167, 228– 239, 2015. SIDDIQUI, S.; GODDARD, R. H.; BIELMYER-FRASER, G. K (b). Comparative effects of dissolved copper and copper oxidenanoparticle exposure to the sea anemone, Exaiptasia pallida. Aquatic Toxicology 160, 205–213, 2015. TANG, C.; LIN, C.; LEE, S.; WANG, W. Membrane lipid profiles of coral responded to zinc oxide nanoparticle induced perturbations on the cellular membrane. Aquatic Toxicology 187, 72–81, 2017. WEIS, V.M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. The Journal of Experimental Biology, 211:3059-3066, 2008. WECKER, P.; LECELLIER, G.; GUIBERT, I.; ZHOU, Y.; BONNARD, I.; ERTEAUXLECELLIER, V. Exposure to the environmentally persistent insecticide chlordecone induces detoxification genes and causes polyp bail-out in the coral P. damicornis. Chemosphere 195, 190-200, 2018. WOO, S.; LEE, A.; DENIS, V.; CHEN, C. A.; YUM, S. Transcript response of soft coral (Scleronephthya gracillimum) on exposure to polycyclic aromatic hydrocarbons. Environmental Science Pollution Research 21, 901–910, 2014. YU, X.; HUANG, B.; ZHOU, Z.; TANG, J.; YU, Y. Involvement of caspase3 in the acute stress response to high temperatureand elevated ammonium in stony coral Pocillopora damicornis. Gene 637, 108–114, 2017. YUAN, C.; ZHOU, Z.; ZHANG, Y.; CHEN, G.; YU, X.; NI, X.; TANG, J.; HUANG, B. Effects of elevated ammonium on the transcriptome of the stony coral Pocillopora damicornis. Marine Pollution Bulletin 114, 46–52, 2017. ZHOU, Z.; YU, X.; TANG, J.; WU, Y.; WANG, L.; HUANG, B. Systemic response of the stony coral Pocillopora damicornis against acute cadmium stress. Aquatic Toxicology 194, 132–139, 2017. 28 ZHU, B.; WANG, G.; HUANG, B.; TSENG, C. K. Effects of temperature, hypoxia, ammonia and nitrate on the bleaching among three coral species. Chinese Science Bulletin Vol. 49 No. 181923-1928, 2004. |
metadata.dc.rights: | Acesso Aberto |
URI: | https://repositorio.ifba.edu.br/jspui/handle/123456789/188 |
Data do documento: | 30-Abr-2019 |
Aparece nas coleções: | Dissertações |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Andressa Tavares Silva.pdf | Estudo da sensibilidade e tolerância ao aumento da Concentração de nutrientes em larvas de corais | 1.52 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.
Ferramentas do administrador