INSTITUTO
FEDERAL
Bahia

Instituto Federal da Bahia
Departamento de Pds-Graduacdo e Qualificacao

Programa de Pdés-Graduagao em Engenharia de Sistemas e Produtos

A BLOCKCHAIN FRAMEWORK FOR
TRACEABILITY IN SUPPLY CHAIN
MANAGEMENT

Edivaldo Mascarenhas Ferreira de Jesus Junior

MASTER'S DISSERTATION

Salvador
November 15, 2021

EDIVALDO MASCARENHAS FERREIRA DE JESUS JUNIOR

A BLOCKCHAIN FRAMEWORK FOR TRACEABILITY IN
SUPPLY CHAIN MANAGEMENT

Dissertation presented to Programa
de Pés-Graduagao em Engenharia de
Sistemas de Produtos of PPGESP
of Instituto Federal da Bahia as a
partial requirement for obtaining the
Master of Science degree on Systems
and Products Engineering.

Advisor: Manoel Carvalho Marques Neto
Co-advisor: Allan Edgard Silva Freitas

Salvador
November 15, 2021

Biblioteca Raul V. Seixas — Instituto Federal de Educacao, Ciéncia e Tecnologia
da Bahia - [FBA — Campus Salvador/BA.
Responsavel pela catalogagao na fonte: Samuel dos Santos Aratjo - CRB 5/1426.

J58b

Jesus Junior, Edivaldo Mascarenhas Ferreira de.

A blockchain framework for traceability in supply chain
manegement / Edivaldo Mascarenhas Ferreira de Jesus Junior.
Salvador, 2021.

90 f. ;30 cm.

Dissertation (Mestrado Profissional em Engenharia de Sistemas
e Produtos) — Instituto Federal de Educagdo, Ciéncia e Tecnologia da
Babhia.

Advisor: Prof. Dr. Manoel Carvalho Marques Neto.

Co-advisor: Allan Edgard Silva Freitas.

1. Blockchain. 2. Supply chain management. 3. Traceability. 4.
Smart contracts. I. Marques Neto, Manoel Carvalho. II. Freitas, Allan
Edgard Silva. III. Instituto Federal de Educagdo, Ciéncia e
Tecnologia da Bahia. IV. Titulo.

CDU 2 ed. 004

1]

BE INSTITUTO FEDERAL

BN pE EDUCAGAO, CIENCIA E TECNOLOGIA
Bl Bazhia

INSTITUTO FEDERAL DE EDUCACAO, CIENCIA E TECNOLOGIA DA BAHIA
R. Emidio dos Santos - Bairro Barbalho - CEP 40301-015 - Salvador - BA - www.portal.ifba.edu.br

PROGRAMA DE POS-GRADUACAO EM ENGENHARIA DE SISTEMAS E PRODUTOS - PPGESP

A BLOCKCHAIN FRAMEWORK FOR TRACEABILITY IN SUPPLY CHAIN MANAGEMENT

EDIVALDO MASCARENHAS FERREIRA DE JESUS JUNIOR

Produto(s) Gerado(s): Relatorio Final de Pesquisa

Orientador: Prof. Dr. Manoel Carvalho Marques Neto

Coorientador: Prof. Dr. Allan Edgard Silva Freitas

Banca examinadora:

Prof. Dr. Manoel Carvalho Marques Neto

Orientador — Instituto Federal da Bahia (IFBA)

Prof. Dr. Allan Edgard Silva Freitas

Coorientador — Instituto Federal da Bahia (IFBA)

Prof. Dr. Billy Anderson Pinheiro

Membro Externo — Amazonia Blockchain Solutions (AMACHAINS)

Profa. Dra. Flavia Maristela Santos Nascimento

Membro Externo — Instituto Federal da Bahia (IFBA)

Trabalho de Conclusdo de Curso aprovado pela banca examinadora em 13/10/2021
Em 15 de outubro de 2021.

Documento assinado eletronicamente por ALLAN EDGARD SILVA FREITAS, Professor Titular , em 15/10/2021, as 18:01,

eil_ "~) conforme decreto n° 8.539/2015.
.;gin_a:pr..l
eletrénica
- -

—
_»,El! @ Documento assinado eletronicamente por FLAVIA MARISTELA SANTOS NASCIMENTO, Professor do Ensino Basico,
assinatura Técnico e Tecnolégico do Campus Salvador, em 18/10/2021, as 09:02, conforme decreto n°® 8.539/2015.

-
e
JE'! @ Documento assinado eletronicamente por Billy Anderson Pinheiro, Usuario Externo, em 18/10/2021, as 14:41, conforme
assinatura decreto n° 8.539/2015.
eletrénica
o1 |
J@l! @ Documento assinado eletronicamente por MANOEL CARVALHO MARQUES NETO, Professor Titular , em 18/10/2021, as
assinatura 18:38, conforme decreto n® 8.539/2015.

F o0

[P .'1‘- -
5 .".'.-l-_".;'l- A autenticidade do documento pode ser conferida no site http://sei.ifba.edu.br/sei/controlador_externo.php?
oL T.E_:.ﬁ 1 acao=documento_conferir&acao_origem=documento_conferir&id orgao acesso_externo=0 informando o cddigo verificador

- :'l-- 2032354 ¢ o codigo CRC 4609E783.

23279.006174/2021-54 2032354v2

This work is dedicated to the memory of
Edivaldo M. F. de Jesus (1951-2021)

RESUMO

Os avancos nas tecnologias da informacao e comunicagao reduziram as barreiras fisicas,
politicas e culturais entre as nagoes. Essas tecnologias permitiram a globalizacao ao
acesso de matérias-primas, bens e servigos. A complexa rede de relacionamentos que en-
volve quem fornece materiais, fabrica componentes ou subprodutos, monta ou mistura as
partes e entrega o produto final no mercado é conhecida como cadeia de suprimentos. O
rapido crescimento das tecnologias da Internet permitiu o surgimento de solugoes emer-
gentes aplicadas em sistemas de rastreabilidade, na area da cadeia de suprimentos. No
entanto, esses sistemas tendem a ser centralizados, monopolistas, assimétricos e opacos.
Como consequéncia, essas aplicacoes estao susceptiveis a problemas de confianca como
fraude, corrupcao, adulteracao e falsificacao de informacoes. Da mesma forma, por ser
um ponto unico de falha, o sistema centralizado é vulneravel ao colapso. Atualmente,
uma emergente tecnologia chamada blockchain apresenta uma nova abordagem baseada
na descentralizacao. No entanto, por estar em seus estagios iniciais, ela tem alguns de-
safios a enfrentar, nos quais a rastreabilidade a escalabilidade e o desempenho se tornam
principalmente um desafio para encarar a enorme quantidade de dados no mundo real.
Este trabalho pretende fornecer uma estrutura baseada em blockchain para facilitar o
desenvolvimento de aplicagoes para rastreabilidade no gerenciamento da cadeia de supri-
mentos.

Palavras-chave: Blockchain; geréncia de cadeia de suprimento; rastreabilidade; con-
tratos inteligentes.

111

ABSTRACT

Advances in information and communication technologies have reduced the physical, po-
litical and cultural barriers between nations. These technologies have enabled globaliza-
tion to access raw materials, goods, and services. The complex web of relationships that
provide materials manufacture the components, assemble or mix the parts and deliver the
final product to market is known as the supply chain. The rapid growth of Internet tech-
nologies allowed the onset of many emerging technologies applied in traceability systems,
in the supply chain area. However, these systems tend to be centralized, monopolis-
tic, asymmetric, and opaque. Consequently, these systems result in trust problem, such
as fraud, corruption, tampering and falsifying information. Likewise, by being a single
point of failure, a centralized system is vulnerable to collapse. Nowadays, a new tech-
nology called the blockchain presents a whole new approach based on decentralization.
Nonetheless, being in its early stages has some challenges to deal with, in which trace-
ability, scalability, and performance become mainly defiance to face the massive amount
of data in the real world. This work is intended to provide a blockchain-based framework
to facilitate the development of applications for traceability in supply chain management.

Keywords: Blockchain; supply chain management; traceability; smart contracts.

Chapter 1—Introduction

Chapter 2—Theoretical Background

2.1 Blockchain
2.1.1 Blockchain Properties . . .
2.2 Fundamentals of blockchain
2.2.1 Cryptography

CONTENTS

2.2.1.1 Cryptographic Hashes

2.2.1.2 Digital Signatures
222 Consensus
2.2.3 Distributed Ledger
2.2.3.1 Transactions . . .
2.2.3.2 Blocks

2.3 Public Blockchain Versus Permissioned Blockchain

2.3.1 Public blockchain

2.3.1.1 Consensus for Public Blockchain
2.3.1.2 The pros and cons of public blockchain

2.3.2 Permissioned Blockchain . .

2.3.2.1 Consensus for permissioned blockchain
2.3.2.2 The pros and cons of permissioned blockchain

2.4 Smart Contracts
2.4.1 Smart Contracts Security .

2.5 Supply Chain Management and blockchain

2.5.1 Transparency
2.5.2 Efficiency
2.5.3 Safety and protection
2.6 Hyperledger Fabric

Chapter 3—Related Work

3.1 Traditional Systems
3.2 Blockchain-based Systems
3.3 Comparison with the presented work

Vil

© 00 00 N =~ O Ot

10
10
11
12
13
14
15
16
17
17
18
18
19
21
21
22
22

viil CONTENTS
Chapter 4—Proposed Solution 29
4.1 Application Architecture L 29
4.1.1 WebApp - FrondEnd L 31

4.1.1.1 User Interaction 31

4.1.1.2 Backend Integration 32

4.1.2 WebApp-BackEnd 32

4.1.2.1 API Gateway 33

4.1.2.2 Service Layer 34

4.1.2.3 Resource Locator 34

4.1.3 Blockchain 34

4.1.3.1 Smart contract L 34

4.1.32 Chaincode 35

4.1.3.3 Ledger 35

4.1.4 Data Storage 35

4141 Filesystemo 36

4.1.4.2 Database 36

4.1.4.3 Blockchain 36

4.2 Actions And Actors 36
421 Setup 36

4.2.2 DatalInsertion. 37

4.2.3 Visualization 37

4.3 Implementation Details00 37
4.4 Proof of Concept 39
4.5 Use Example 39
Chapter 5—Conclusion and Future work 47
Appendix A—Project Management 55
A1 Activities 55
A1.1 Frontend 55

A12 Backend 56

A.1.3 Hyperledger Blockchain 56

A2 Userstories e 56
A.3 Non-functional requirements 58
Appendix B—Smart Contract and backend endpoints 59
B.1 Template for config file 59
B.2 Assets, asset items, steps, and actors structs L. 60
B.3 Main function 61
B.4 Create Asset e 61
B.5 Move asset item 62
B.6 Track assetitem 63

CONTENTS

B.7 Audit Methods
B.8 Backend Endpointso oo

Appendix C—Data Structure

1X

LIST OF FIGURES

2.1 Signatures validated by public/private key (CHEGG, 2017). 9
2.2 Structure of a block. (ZHENG et al., 2016) 11
2.3 Blockchain representation (MICHAEL; COHN; BUTCHER, 2018) 12

2.4 Hyperledger Fabric transaction flow (MANEVICH; BARGER; TOCK, 2018). 23

4.1 Application architecture of Supply Chain Management - Blockchain Plat-

form (SCM-BP) 30
4.2 API Gateway. 33
4.3 SCM User flow o 38
4.4 Fill in asset info. 40
4.5 Adding actors. 41
4.6 Defining steps.o 41
4.7 Review asset details before submitting. 42
4.8 Asset Items list. 42
4.9 Actors list. 43
4.10 Steps list. L 43
4.11 Create asset item form. 44
4.12 Move asset item form. 45
4.13 Track an asset item forward., 46
4.14 Track an asset item backward. 46
C.1 SCM-BP data structure 69

X1

2.1
3.1

Al
A2

LIST OF TABLES

Public Vs. Permissioned blockchain (101BLOCKCHAINS, 2020): 13
Related Works and their main characteristics, strategies and results. . . . 28
SCM-BP User Stories 57
Non-functional requirements of SCM-BP 58

xiil

LIST OF ACRONYMS

SCM Supply Chain Management 1
P2P peer-to-peer oL L Lo e 5
SK secret key ..o L. 8
PK publickey 8
BG Byzantine generalso 9
BTC Bitcoin.o 13
ETH Ethereumo 13
XRP Ripple 13
PoW Proof-of-worko 13
BFT Byzantine fault toleranceo 0oL 16
SC Smart contracto 18
KYC Know-Your-Customer 22
AML Anti-Money Laundering 22
IoT Internet of Things 25
RFID Radio frequency identification 25
SaaS Software-as-a-Service 25
SPA Single-page application 31
SSO Single Sign-ono 32
API Application programming interface 36
SQL Structured Query Language 36
DBMS Database Manager System 0L 39
SCM-BP Supply Chain Management - Blockchain Platform 57

XV

Chapter

INTRODUCTION

Hundreds of years ago, supply chains were reasonably straightforward. Mines and farms
provided natural resources to skilled craftsmen like blacksmiths and tailors, creating and
selling finished products. Today’s supply chains are much more complicated, fragmented,
and difficult to understand. Hundreds or even thousands of supplies worldwide contribute
to making and shipping products purchased by a customer. Most of the time, various
companies do not know each other, and a final consumer likely doesn’t know anything
about how, where, when, or under what conditions the products passed through. This is
not just a problem for consumers. Today’s supply chains are so complex that even big
industry players have difficulty tracking how their goods get made.

Many systems have been developed to solve problems that come with this complexity,
such as supply chain visibility and traceability. However, these systems typically store
information in standard databases controlled by service providers. This centralized data
storage becomes a single point of failure and risks tampering. Products’ origin information
may be essential, and a central server may be changed, generating doubt about confiability
in that spot. In this scenario, a centralized organisation may become a vulnerable target...
for bribery, and then the whole system can not be trusted anymore.

The complex web of relationships that provide materials manufacture the components,
assemble or mix the parts and deliver the final product to market is known as the supply
chain (BUURMAN, 2002).

Management is on the verge of a breakthrough in understanding how industrial com-
pany success depends on the interactions between information flows, materials, money,
human resources, and capital equipment. The way these five flow systems interlock to am-
plify one another and cause change and fluctuation will form the basis for anticipating the
effects of decisions, policies, organizational forms, and investment choices (FORRESTER,
1958).

The term Supply Chain Management (SCM) has risen to prominence over the past
fifteen years (COOPER; LAMBERT; PAGH, 1997). For example, at the 1995 Annual
Conference of the Council of Logistics Management, 13.5% of the concurrent session ti-
tles contained the words ”supply chain.” At the 1997 conference, just two years later,

2 INTRODUCTION

the number of sessions containing the term rose to 22.4%. Moreover, the term is fre-
quently used to describe executive responsibilities in corporations (LONDE, 1997). SCM
has become such a "hot topic” that it is difficult to pick up a periodical on manufactur-
ing, distribution, marketing, customer management, or transportation without seeing an
article about SCM or SCM-related topics (ROSS, 1997).

La Londe and Masters proposed that a supply chain is a set of firms that pass materi-
als forward. Usually, several independent firms are involved in manufacturing a product
and placing it in the hands of the end-user in a supply chain—raw material and compo-
nent producers, product assemblers, wholesalers, retailer merchants, and transportation
companies are all members of a supply chain (LONDE; MASTERS, 1994). By the same
token, Lambert, Stock, and Ellram define a supply chain as the alignment of firms that
brings products or services to market.

Another definition notes that a supply chain is the network of organizations involved,
through upstream and downstream linkages, in the different processes and activities that
produce value in the form of products and services delivered to the ultimate consumer
(CHRISTOPHER, 2017). In other words, a supply chain consists of multiple firms, both
upstream (i.e., supply) and downstream (i.e., distribution), and the ultimate consumer.

As summarizing, (MENTZER et al., 2001) defines a supply chain as a set of three or
more entities (organizations or individuals) directly involved in the upstream and down-
stream flows of products, services, finances, or information from a source to a customer.

To begin with, the starting point of a supply chain is the extraction of raw materi-
als and how they are first processed (preprocessed) by suppliers for delivery in the next
step. The next step is called manufacturing, where the conversion process for raw mate-
rials takes place. Following this, the constructed products are passed to the distributors
responsible for allocating them to multiple intermediaries, such as wholesalers and re-
tailers. Distributors also maintain an active inventory of products, as previous products
are connected to suppliers. Subsequently, wholesalers do not sell products directly to the
public but other retailers, whereas retailers dispose of products purchased to end-users.
Finally, consumers are who buy or receive goods or services for personal use and not for
commercial resale or trade purposes (LITKE; ANAGNOSTOPOULOS; VARVARIGOU,
2019).

The manufacturer needs to validate crucial information about the natural resources
they collected by reading and verifying all tags included in its transactions and then
proceeding to the proper manufacturing step. Some products have more significant value
by region of origin or guarantee a fair process, so traceability is essential. New transactions
with new information, such as manufacturer name, field experience, and more, are sent
after the internship has been completed. Then the products are delivered to distributors.
Distributors can sell products to wholesalers and retailers. This process is represented
by transactions that contain essential data, such as merchant and customer address,
exchange value, product raw material quality, and more (SAUER; SEURING, 2018).

As the distributors sell products to intermediates (generally not end-users), they must
check the progress route until that stage, such as the raw material origin, manufacturer’s
company popularity, distributor address, and others. Retailers can audit a product’s
natural resource quality and get the appropriate feedback before selling it to the consumer.

INTRODUCTION 3

After that, when a distributor sends the product to the wholesaler, some details, such as
manufacturer name, field experience, and others, are submitted after similarly completing
acts. A wholesaler needs to check this information and execute their selling to another
wholesaler or retailer company. The same applies to retail companies. Finally, end-users
obtain the final product and should track and verify all aspects from the beginning of its
supply chain journey (LITKE; ANAGNOSTOPOULOS; VARVARIGOU, 2019).

There are billions of products being manufactured daily through complex supply
chains extending to all parts of the world. However, there is very little information
on how, when, and where these products originated, were manufactured, and used during
their life cycle (HORIUCHI, 2015).

Before reaching the end consumer, the goods go through an often vast network of
retailers, distributors, carriers, warehousing facilities, and suppliers who participate in
the design, production, delivery, and sales process of a product, but in many cases.
These steps are a dimension invisible to the consumer (B., 2015).

Gryna e Juran (1998) defines traceability as the ability to preserve the identity of
the products and their origins so that the collection, documentation, and maintenance of
information related to all processes in the production chain must be ensured. For a food
product, traceability represents the ability to identify where and how it was grown, as
well as the ability to track its post-harvest history and to identify the processes performed
at each step in the production chain through records. Traceability is required primarily
for (HORIUCHI, 2015): Improve credibility with customers and consumers, ensure that
only quality materials and components are present in the final product, better allocate
responsibilities, identify products that are distinct but may be confused, enable the return
of defective or suspect products, and find the causes of failures and take steps to repair
them at the lowest possible cost.

Consumers consider traceability as part of a standard protection package when pur-
chasing products. Traceability can improve credibility in this scope since all the related
providers and dealers or another agent between the raw manufacturers and the final con-
sumer can be tracked. In a traceability system, the responsibility papers are well defined.
A traceability system allows users to track products by providing information about them
(e.g., originality, components, or locations) during production and distribution. Suppli-
ers and retailers typically require independent, government-certified traceability service
providers to inspect products throughout the supply chain. Vendors and retailers request
traceability services for different purposes. Suppliers want to receive certificates to show-
case their products. Retailers want to verify the origin and quality of products (LU; XU,
2017).

Supply chain visibility, or traceability, is one of the key challenges encountered in the
business world. Most companies have little or no information about their own second and
third-tier suppliers. Transparency and end-to-end visibility of the supply chain can help
shape product, raw material, test control, and end product flow, enabling better opera-
tions and risk analysis to ensure better chain productivity (ABEYRATNE; MONFARED,
2016).

Folinas et al. (FOLINAS; MANIKAS; MANOS, 2006) identified that the efficiency of
a traceability system depends on the ability to track and trace each asset and logistics unit

4 INTRODUCTION

in a way that enables continuous monitoring from firstly processed until final clearance
by the consumer.

Aung e Chang (2014) and Golan et al. (2004) set three main traceability objectives,
namely: (1) better supply chain management, (2) product differentiation and quality as-
surance, and (3) better identification of non-compliant products. An additional objective
is to maintain assurance of traceability following applicable regulations and standards.

Traceability systems typically store information in standard databases controlled by
service providers. This centralized data storage becomes a single point of failure and risks
tampering. Consequently, these systems result in trust problems, such as fraud, corrup-
tion, tampering, and falsifying information. Likewise, a centralized system is vulnerable
to collapse (TIAN, 2017).

Nowadays, a new technology called the blockchain presents a whole new approach
based on decentralization. Blockchain enables end-to-end traceability, bringing a stan-
dard technology language to the supply chain while allowing consumers to access the
asset’s history of these products through a software application. This characteristic is
provided by an immutable register ledger that facilitates recording transactions and track-
ing assets across a network (GALVEZ; MEJUTO; SIMAL-GANDARA, 2018).

Blockchain and smart contracts could make supply chain management more straight-
forward and transparent. The idea is to create a single source of information about
products and supply chains via a global ledger. Each component would have its entry on
the blockchain that gets tracked over time. Both untrust companies could then update
the status of goods in real-time. The result is that once the clients receive their products,
they can track every piece back to its manufacturer. Theoretically, users could trace the
supply chain back to the mines where the raw materials came from (GREVE et al., 2018).

Companies can also use the blockchain supply chain as a single source of truth for
their products. They can manage and monitor risks within the supply chain, ensure
the quality of delivery parts and track the delivery status. Additionally, companies can
use smart contracts to manage and pay for the supply chain autonomously. This would
reduce the need for large contract invoices on the back-and-forth of refund requests for
faulty components. Those same smart contracts could assist with shipping and logistics
tracking valuable products as they travel around the world. Using blockchain, companies
can finally have a complete picture of their products at every stage in the supply chain,
bringing transparency to the production process while reducing the cost of manufactured
goods.

This work presents Supply Chain Management - Blockchain Platform (SCM-BP), a
generic open source framework intended to be used in any supply chain correlated to
assets and products. It also presents a use case of this framework applied.

This dissertation is structured as follows: Chapter 2 presents several technologies
involved in preparing this dissertation, introduces essential concepts of the Computer area
in which the context of this project is inserted, and presents business concepts related
to supply chain management. Chapter 3 shows correlated works. Chapter 4 presents
the solution, its architecture, details of the executed implementation, and exposes the
validation and results. The last chapter presents the conclusions and future work.

Chapter

In this section, the main concepts studied are presented, which provided subsidies for the proposed project’s

development.

THEORETICAL BACKGROUND

2.1 BLOCKCHAIN

Recently, cryptocurrency has attracted extensive attention from both the industry and
the academy. Bitcoin, often called the first cryptocurrency, had massive success, with
the capital market coming to $10 billion in 2016 (COINDESK, 2016). Blockchain is the
central mechanism of Bitcoin and was first proposed in 2008 and implemented in 2009
(NAKAMOTO et al., 2008). The blockchain can be considered a public ledger, in which
all committed transactions are stored in a block chain. This chain grows continuously
when new blocks are attached to it (ZHENG et al., 2016).

At the origin of the blockchain is the Bitcoin protocol, proposed by Satoshi Nakamoto
(NAKAMOTO et al., 2008). This paper proposes a peer-to-peer (P2P) network where
transactions with the cryptocurrency bitcoin, proposed by customers, are received by
servers, who will decide, through a consensus protocol based on cryptographic challenges,
on the order in which they will be carried out and permanently stored in a chain of blocks,
replicated on each server. According to FORMIGONTI (2017), it was the creation of a
digital currency that worked in a P2P network that allowed the sending of online pay-
ments in a completely secure way, without the involvement of financial institutions, for
all participants from the web. In this sense, blockchain was created motivated by an
efficient, economical, reliable, and secure system to conduct and record financial trans-
actions. Hence the question: what is the relationship between blockchain and Bitcoin?
Blockchain is the platform used for the operation of the Bitcoin network and several other
cryptocurrencies.

While the system of financial institutions that serve as third parties reliable processors
for processing payments works well for most, still it suffers from the shortcomings inherent
in the model based on confidence. In addition, the cost of mediation increases transaction
costs, limiting the minimum practical size of the transaction and eliminating the possi-
bility of occasional small transactions. To solve these problems, (NAKAMOTO et al.,

5

6 THEORETICAL BACKGROUND

2008) defined an electronic payment system called Bitcoin based on cryptographic proof
rather than reliability, allowing either party to be willing to transact directly without the
need for a reliable third party.

This revolution began with a new marginal economy on the Internet. Bitcoin emerges
as an alternative currency issued and not backed by a central authority but by automated
consensus among networked users. However, its true uniqueness lay in the fact that it
did not require that users trust each other. Through self-policing algorithmically, any
malicious attempt to circumvent the system would be rejected. In a precise and technical
definition, Bitcoin is digital money transacted via the Internet in a decentralized system
without bail, using a ledger called blockchain. It is a new way of combining peer-to-peer
file sharing rent with public key encryption (SWAN, 2015).

For (SWAN, 2015), besides the currency (”Blockchain 1.0”), smart contracts (72.0”)
demonstrate how the blockchain is in a position to become the fifth disruptive computing
paradigm after mainframes, PCs, Internet, and mobile/ social networks. Bitcoin is start-
ing to become a digital currency, but the technology blockchain behind it can be much
more significant.

The rapid growth in blockchain technology adoption and the development of appli-
cations based on this technology have revolutionized financial services industries. In
addition to bitcoin, typical applications of blockchain usage vary from proprietary net-
works used to process financial and insurance claims to platforms that can issue and trade
equity and corporate bonds (MICHAEL; COHN; BUTCHER, 2018).

Blockchain exists with real-world implementations beyond cryptocurrencies, and these
solutions deliver powerful benefits to healthcare organizations, bankers, retailers, and
consumers. The potential benefits of blockchain are more than just economic. They
extend to the political, humanitarian, social, and scientific domains. Specific groups are
already harnessing their technological capacity to solve real-world problems (MICHAEL;
COHN; BUTCHER, 2018).

2.1.1 Blockchain Properties

Blockchain technology has key features such as centralization, persistence, anonymity, and
auditability. Blockchain can function in a decentralized environment that is activated by
integrating several key technologies such as cryptographic hash, digital signature (based
on asymmetric encryption), and distributed consensus engine. With blockchain tech-
nology, a transaction may occur in a decentralized manner. As a result, blockchain can
significantly save costs and improve efficiency (ZHENG et al., 2016). The primary proper-
ties of the blockchain are considered innovative and enable rapid adoption for technology
(GREVE et al., 2018):

e Decentralization: Applications and systems run in a distributed manner, through
the establishment of trust between the parties, without the need for a trusted

intermediary entity. This is the primary motivator for the growing interest in the
blockchain;

e Availability and integrity: All datasets and transactions are securely replicated in

2.2 FUNDAMENTALS OF BLOCKCHAIN 7

different nodes to keep the system available and consistent;

e Transparency and auditability: All transactions recorded in the ledger are public
and can be verified and audited. Furthermore, technology codes are often open,
verifiable;

e Immutability and Irrefutability: Transactions recorded in the ledger are immutable.
Once registered, they cannot be refuted. Updates are possible based on the gener-
ation of new transactions and the realization of a new consensus;

e Privacy and Anonymity: It is possible to offer privacy to users without the third
parties involved having access and control of their data. In technology, each user
manages their keys, and each server node stores only encrypted fragments of user
data. Transactions are somewhat anonymous, based on the address of those in-
volved in the blockchain;

e Disintermediation: Blockchain enables the integration between different systems
directly and efficiently. Thus, it is considered a connector of complex systems
(systems of systems), allowing the elimination of intermediaries to simplify the
design of systems and processes;

e Cooperation and Incentives: Offer of an incentive-based business model in the light
of game theory. On-demand consensus is now offered as a service at different levels
and scopes.

2.2 FUNDAMENTALS OF BLOCKCHAIN

In this section, the key elements of the blockchain that contribute to its properties will
be presented such as integrity integrity, immutability, transparency, availability, disinter-
mediation, decentralization.

2.2.1 Cryptography

Blockchain relies heavily on encryption to satisfy system and application security re-
quirements. As the word suggests, cryptocurrencies also make heavy use of encryption.
Encryption provides a mechanism for safely encoding the rules of system encryption
on the system itself. This can prevent tampering, and misconceptions and coding in a
mathematical protocol the rules for creating new currency units. So, before understand-
ing blockchains correctly, it is necessary to understand the cryptographic foundations
they trust (NARAYANAN et al., 2016).

Cryptography is a profound academic field of research that uses many advanced math-
ematical techniques that are notoriously subtle and complicated. In this chapter, cryp-
tographic hashes and digital signatures will be defined, which stand out among the most
used resources. For more details, the reader should refer to the book (NARAYANAN et
al., 2016).

8 THEORETICAL BACKGROUND

2.2.1.1 Cryptographic Hashes A hash function is a mathematical function with
the three properties to be followed (NARAYANAN et al., 2016):

e Its input can be any string of any length;
e Produces a fixed size output;

e [t is efficiently computable. Intuitively, this means that it is possible to find out the
hash function output within a reasonable time for a given input string. Technically,
hashing a n-bit string must have an O(n) runtime.

These properties define a general hash function. Cryptographic hash functions (or
cryptographic summaries) are unidirectional and hardly allow retrieving the original value
x from the hash h. For a hash function to be cryptographically secure, it must satisfy the
following three properties: (1) collision resistance, (2) hiding, and (3) puzzle friendliness
(GREVE et al., 2018).

A collision occurs when two distinct inputs produce the same output. A hash function
H is collision-resistant when it is impossible to find two values x and y, such that x # y
and H(z) = H(y) (NARAYANAN et al., 2016).

The hidden property states that having the hash function output y = H(x), there is
no possible way to find the = input (GREVE et al., 2018).

A hash function H is considered puzzle friendliness if for each possible output value of
n bits y if k is chosen from a distribution with high min-entropy, then it is impracticable
to find x such that H(k||z) = y in time significantly less than 2" (NARAYANAN et al.,
2016).

2.2.1.2 Digital Signatures A digital signature is supposed to be a digital analog of
a handwritten paper signature. Two signature properties are desired, which correspond
well to the analogy of the handwritten signature. First, only one person can make their
signature, but anyone can verify if it is valid. Secondly, it is desired that the signature be
linked to a specific document, so it cannot indicate the agreement or endorsement to a
different document (MERKLE, 1989). Moreover, it is not possible to forge a signature in
such a way as to reuse it in some other context. That is, signatures must be irrefutable.

To implement digital signatures, asymmetric key encryption is used. A secret key (SK)
is used for signing the document, and a public key (PK) is used to attest the signature’s
authenticity (GREVE et al., 2018).

A digital signature consists of the following three algorithms (NARAYANAN et al.,
2016):

o (sk,pk) := generateKeys(keysize) — The generateKeys() method receives a key
size (keysize) in the input and return a pair of public (pk) and private (sk) keys.

o sig := sign(sk,msg) — The method sign() receives a message msg and a secret key
(sk) on entry and returns the signature sig f that message under sk.

2.2 FUNDAMENTALS OF BLOCKCHAIN 9

o isValid := verify(pk,msg, sig) — The method verify receives a public key (pk), a
message msg, and a signature (sig) as input, and returns a boolean value: isValid =
true if sig is a signature valid for msg under pk; isValid = false, otherwise.

The following two properties must be maintained:

e Authenticity: Signatures can be validated:
veri fy(pk, message, sign(sk, message)) == true.

e Signatures are existentially unfalsifiable: signature cannot be forged.

It is noted that generateKeys() and sign() can be random algorithms. Generating
keys should be randomized because it should be generating different keys for different
people. On the other hand, verify() will always be deterministic.

Message Signing with Bob's .
“ private-key e el

Bob
(Sender)
h I%h
Verified Verification with
Message Bob's public-key
Alice
[(Receiver)

Figure 2.1 Signatures validated by public/private key (CHEGG, 2017).

2.2.2 Consensus

The key to blockchain operation is that the network must agree collectively on the ledger’s
content. Instead of a central entity maintain control over information (such as a bank,
for example), the data is shared among all. This requires the network to maintain the
consensus around the information recorded in the blockchain. How this consensus is
reached affects the security and economic parameters of the protocol (KOSTAREV, 2017).

In this context, consensus emerges as a fundamental problem since it allows distributed
participants to coordinate their actions to reach joint decisions, ensuring the consistency
of safety and system progress (liveness) despite failures (GREVE et al., 2018). More
specifically, in the context of blockchain, consensus enables an agreement on the next
block that will be added to the blockchain.

In the blockchain, reaching consensus between untrusted nodes is a transformation of
the problem of Byzantine generals (BG) (LAMPORT; SHOSTAK; PEASE, 1982). In the
BG problem, a group of generals who command a portion of the Byzantine army circles

10 THEORETICAL BACKGROUND

the city. The attack would fail if only part of the generals attacked the city. Generals
need to communicate to agree on the attack or not. However, there may be traitors in
the generals. The traitor could send different decisions to different generals. This is an
environment without trust.

Reaching consensus in such an environment is a challenge. This is also a challenge for
blockchain because its network is distributed, and there is no central node that ensures
that ledgers on distributed nodes be all the same. Nodes do not need to trust other nodes.
Thus, some protocols are required to ensure that ledgers on different nodes are consis-
tent (KOSTAREV, 2017). To solve the consensus problem, several algorithms have been
proposed, the mainly used are Proof-of-Work, Proof-of-Stake, Delegated Proof-of-Stake,
Leased Proof-Of-Stake, Proof of Elapsed Time, Practical Byzantine Fault Tolerance, Sim-
plified Byzantine Fault Tolerance, Delegated Byzantine Fault Tolerance, Directed Acyclic
Graphs, Proof-of-Activity, Proof-of-Importance, Proof-of-Capacity, Proof-of-Burn and
Proof-of-Weight (MINGXIAO et al., 2017).

A good consensus algorithm means efficiency, security, and convenience. Current
standard consensus algorithms still have many shortcomings. New consensus algorithms
are created to solve some blockchain-specific problems (ZHENG et al., 2016).

2.2.3 Distributed Ledger

A distributed ledger is a data structure distributed by several nodes or computing devices.
Each node replicates and saves an identical ledger copy. Each participating node in the
network updates independently (GREVE et al., 2018).

The innovative feature of distributed accounting technology is that any central author-
ity does not maintain the ledger. Updates to the ledger are independently constructed
and recorded by each node. The nodes then vote on these updates to ensure that most
agree on the conclusion, based on some previous consensus algorithm. Once consensus
has been reached, the distributed ledger updates itself, and the latest agreed version is
saved on each separate node (SWAN, 2015). Thus, the distributed ledger is replicated
and immutable.

2.2.3.1 Transactions The most fundamental definition of a transaction is an atomic
event allowed by the underlying protocol from a technical standpoint. A transaction
determines a sequence of state operations. It adds a transfer of an asset or, generally
speaking, a smart contract. In a basic case, the transaction girds a digital signature of
the issuer holding the asset and the receiver’s address and inputs and outputs for the
transaction. Each transaction must contain both Inputs and Outputs, just like in an
accounting book. Entries indicate the previous transaction hash related to the current
one (GREVE et al., 2018). Validating a Transition involves:

1. signature verification;
2. confirmation of existing values from hashes of previous referenced transactions;

3. confirmation that any other transactions did not previously spend the amount.

2.2 FUNDAMENTALS OF BLOCKCHAIN 11

In this case, it is necessary to search the blockchain between the block from the refer-
enced transaction to the last block of the structure. Fach node of the blockchain network

independently validates transactions, and this feature contributes to the decentralization
of the process (GREVE et al., 2018).

2.2.3.2 Blocks Blocks contain a header with the information needed for the current
maintenance and its validation. A block consists of the block header and block body, as
shown in Figure 2.2.

Block version 02000000
b6ff0b1b168032862a30ca44d34609e8
Parent Block Hash $10¢334beb48ca0<0000000000000000
9d1033522e949386ca9385695F00ede2
Merkle Tree Root 70dda20810decd12bc9b048aaab31471
Timestamp 24095354
nBits 30c31b18
Nonce 1970864
™1 TX2 aee TXn

Figure 2.2 Structure of a block. (ZHENG et al., 2016)

In particular, the header pack includes:

e Block version: indicates which set of block validation rules to follow;

Parent block hash: A 256-bit hash value that points to the previous block;

Merkle tree root hash: The hash value of all transactions in the block;

Timestamp: Current date and time as seconds since 1970-01-01T00:00 UTC;
e nBits: current hashing target in a compact format;
e Nonce: A 4-byte field, usually starting with 0 and increasing for each hash.

The body’s block consists of a transaction counter and transaction. The maximum
number of transactions a block can hold depends on block size and the size of each
transaction. Blockchain uses an asymmetric encryption mechanism to validate transac-
tion authentication. A digital signature based on asymmetric encryption is used in an
untrusted environment (ZHENG et al., 2016).

The validation of a block consists in verifying (i) if its structure is well-formed (ii) its
hash is valid (meets the challenge), (iii) its size is within the network accepted limit, (iv)
the set of transactions within the block is valid, (v) the first transaction (and only the
first) is the coinbase transaction - which incorporates the generation of new cryptocur-
rencies in the system, besides acting as a reward mechanism. The blocks are validated

12 THEORETICAL BACKGROUND

independently by each node of the blockchain network, and this feature contributes to
the process of decentralization (GREVE et al., 2018).

Figure 2.3 presents a visual representation of a blockchain (TTAN, 2017). When a
person "A” wants to send an asset to person "B”, the transaction is represented as
a "block”. This block is broadcast to every participant in the network to verify if this
transaction is valid. Once validated, the block is added to the chain, providing an indelible
and transparent record of transaction. The asset then, moves from A to B.

The block is broadcast to
every party in the network.

wants to send The transaction is represented
online as a“block”.

83— D ::-

D 00—]

The block then can be added to the The = moves
chain, which provides an indelible and from A to B.
Those in the network verlfy transparent record of transactions.

that the transaction is valid.

Figure 2.3 Blockchain representation (MICHAEL; COHN; BUTCHER, 2018)

2.3 PUBLIC BLOCKCHAIN VERSUS PERMISSIONED BLOCKCHAIN

Blockchain networks can be categorized into two groups: public (or permissionless)
blockchain and private (or federated or permissioned) blockchain (with permission and
controlled access) (GREVE et al., 2018).

Since the beginning of blockchain technology, people have debated about public vs.
permissioned blockchain. In an enterprise environment, it is essential to know the signif-
icant differences between these two. Public and permissioned blockchain examples play
a considerable role in the companies looking for the perfect blockchain type for their
solutions (101BLOCKCHAINS, 2020). Table 2.1 presents a comparison between public
and permissioned blockchain.

2.3 PUBLIC BLOCKCHAIN VERSUS PERMISSIONED BLOCKCHAIN 13

Table 2.1 Public Vs. Permissioned blockchain (101BLOCKCHAINS, 2020):

Public blockchain Permissioned blockchain
Access Anyone Single Organization
Authority Decentralized Partially decentralized
Transaction Speed | Slow Fast
Consensus Permissionless Permissioned
Transaction Cost | High Low
Data Handling Read and Write access for any- | Read and Write access for a sin-
one gle organization
Immutability Full Partial
Efficiency Low High

The primary difference between public and private blockchain is the level of access
participants are granted. In order to pursue decentralization to the fullest extent, public
blockchains are entirely open. Anyone can participate by adding or verifying data. The
most common examples of public blockchain are Bitcoin (BTC) and Ethereum (ETH).
A public blockchain is about accessibility, which is evident in its use (SELFKEY, 2020).

Conversely, permissioned blockchain (also known as private blockchain) only allows
certain entities to participate in a closed network. Participants are granted specific rights
and restrictions in the network, to have full access or limited access at the network’s
discretion. As a result, permissioned blockchain is more centralized as only a small
group controls the network. The most common examples of permissioned blockchains are
Ripple (XRP) and Hyperledger (BLOCKGEEKS, 2018).

Additionally, some public blockchains also allow anonymity, while permissioned ones
do not. For example, anyone can buy and sell Bitcoin without having their iden-
tity revealed. It allows everyone to be treated equally. Whereas with permissioned
blockchains, the identities of the participants are known. This is typical because permis-
sioned blockchain is used in the corporate and business-to-business sphere, where it is
crucial to know who is involved (101BLOCKCHAINS, 2020).

2.3.1 Public blockchain

On a public or permissionless blockchain, any person can participate without a specific
identity. There are no restrictions when it comes to participation. Public blockchains typ-
ically involve a native cryptocurrency and often use Proof-of-work (PoW) consensus and
economic incentives (ANDROULAKI et al., 2018). Anyone can audit a public blockchain,
and each node has as much transmission power as any other. For a transaction to be
considered valid, it must be authorized by all nodes constituents via the consensus pro-
cess. As long as each node meets protocol-specific stipulations, their transactions can be
validated and thus added to the chain (COMSTOR, 2017).

In a public blockchain, all the participants have equal rights. People can join in
and participate in consensus and transact with their peers as they please. Everyone can
see the ledger as well, thus maintaining transparency in any time (101BLOCKCHAINS,

14 THEORETICAL BACKGROUND

2020).

As the P2P network node-set is unknown, its membership is dynamic, allowing random
node entrances, exits, and anonymity. Blockchain can act globally without the control
of its participants, who do not even trust each other mutually. Are examples of public
blockchain: the Bitcoin, Ethereum, and several other cryptocurrencies (BASHIR, 2018;
ANTONOPOULOS, 2017).

If a fully decentralized network system is required, then public blockchain is the way
to go. However, it can get problematic when incorporating a public blockchain network
with the enterprise blockchain process (101BLOCKCHAINS, 2020).

The main characteristics of a public blockchain are:

e Open environment: public blockchain is open for all. The system typically has an
incentive mechanism to encourage more participants to join the network;

e Anonymous nature: everyone is anonymous. Users will not use their real name or
real identity here. Everything would stay hidden, and no one can track data based
on that;

e No regulations: public blockchain does not have any regulations that the nodes
have to follow. So, there is no limit to how one can use this platform for their
betterment. However, the main issue is that enterprises cannot work in a non-
regulated environment;

e True decentralization: public blockchain provides true decentralization. This is
something that is quite absent in private blockchain networks. As everyone has a
copy of the ledger, it creates a distributed nature as well. Basically, in this type of
blockchain, there is not a centralized entity. Thus, the responsibility of maintaining
the network is solely on the nodes. With help from a consensus algorithm, they are
updating the ledger, promoting fairness;

e Full transparency: public blockchain companies tend to design the platforms fully
transparent to anyone on the ledger. It means that users can see the ledger anytime
they want. So, there is no scope for any corruption or discrepancies. Anyhow,
everyone has to maintain the ledger and participate in consensus;

e Immutability: the public blockchain network is fully immutable. Once a block gets
on the chain, there is no way to change it or delete it. So, it ensures that no one
can alter a particular block to benefit from others.

2.3.1.1 Consensus for Public Blockchain Due to the uncertainties regarding the
participants, public blockchains generally adopt mining-based consensus mechanisms. In
these mechanisms, miners vie with each other for consensus leadership, using computa-
tional power, possession power over cryptocurrency or other election-relevant powers that
cannot be monopolized such that the same knots always come out victorious) (GREVE
et al., 2018).

2.3 PUBLIC BLOCKCHAIN VERSUS PERMISSIONED BLOCKCHAIN 15

Compensation to these miners for their work is often cryptocurrency. These incen-
tives are critical to preventing Byzantine attacks by solving the fundamental challenge of
agreement globally. Currently, proof of work is one of the few prosperous and resilient con-
sensuses approaches to Sybil attacks (DOUCEUR, 2002) (impersonation attacks, when
malicious users become impersonate others).

In the mining process, new transactions are vilified by the nodes in the whole system
known as “miners” before being added to the blockchain. Miners add new blocks on
the chain or new transactions on the block by a consensus algorithm, which must be
confirmed by the majority of all the nodes in the system, like a voting operation, as
the valid data. Blockchain-based systems rely on miners to aggregate transactions into
blocks and append them to the blockchain. Once a sufficient number of nodes confirms
the transaction, it becomes a valid and permanent part of the database.

2.3.1.2 The pros and cons of public blockchain One of the most significant
advantages of a public blockchain is that there is no need for trust. Everything is recorded,
public, and cannot be changed. Everyone is encouraged to do the right thing for the
betterment of the network. There is no need for intermediaries (BLOCKGEEKS, 2018).

The other significant advantage is security. The more decentralized and active a
public blockchain is, the more secure it becomes. As more people work on the network,
it becomes harder for any attack to succeed. It is nearly impossible for malicious actors
to band together and control the network (SELFKEY, 2020).

The final piece of what makes public blockchain successful is transparency. All data
related to transactions are open to the public for verification. The transparency of pub-
lic blockchain increases potential use cases, such as decentralized identity (COMSTOR,
2017).

One of the biggest problems with public blockchain is speed. Public blockchains like
Bitcoin are extremely slow, only managing to process seven transactions per second.
Compare that to Visa, which can do 24,000 transactions per second, and we see where
the problem is. Public blockchains are slow because it takes time for the network to reach
a consensus. Additionally, the time needed to process a single block takes a long time
compared to a private blockchain (BLOCKGEEKS, 2018).

Public blockchains also face scalability concerns. With the current state of things,
public blockchains cannot compete with traditional systems. The more a public blockchain
is used, the slower it gets because more transactions clog the network. However, steps
are being taken to remedy this problem. An example is Bitcoin’s Lightning Network

(SELFKEY, 2020).

Lastly, energy consumption has been a concern when it comes to the public blockchain.
Bitcoin’s algorithm relies on Proof-of-Work, which relies on using much electricity to
function. That being said, other algorithms such as Proof-of-Stake use far less electricity
(SELFKEY, 2020).

16 THEORETICAL BACKGROUND

2.3.2 Permissioned Blockchain

Permissioned, federated, or private blockchains, on the other hand, perform a blockchain
between a set of known and identified participants. A permissioned blockchain provides
a way to protect the interactions between entities with a common goal but does not
trust each other, like companies that trade funds, assets, or information. Relying on peer
identities, one permissioned blockchain may use the traditional consensus of Byzantine
fault tolerance (BFT) (ANDROULAKI et al., 2018).

Federated blockchain has its known composition. It is formed by n processes whose
inputs and outputs are subject to permissions. Participants are identified, authenticated,
and authorized. This blockchain model aims to serve better corporate or private interests
where participants have well-defined roles and can even organize themselves into groups.
Examples of permissioned blockchain are Hyperledger Fabric (CACHIN et al., 2016) and
some other projects (CACHIN; VUKOLIC, 2017).

As enterprises need privacy, permissioned blockchain use cases seem a perfect fit in
this case. Without proper privacy, their competition can enter the platforms and leaks
valuable information to the press. This, in the long term, can influence the brand value
greatly. So, in some instances, companies need privacy greatly (101BLOCKCHAINS,
2020).

The main characteristics of public blockchains are:

e High efficiency: compared with a public blockchain, which tends to lack inefficiency
because it assumes that everyone (or every node) is part of the network. As a result,
when more people try to use the features from network, it takes up many resources
that the platforms cannot back up. Thus, it slows down rapidly. On the other
hand, private blockchain only allows a smaller number of people in the network. In
many cases, they even have specific tasks to complete. So, there is no way they can
take up extra resources and slow down the platform;

e Full privacy: Private blockchain tends to focus on privacy concerns. Enterprises
always deal with security ad privacy issues. Moreover, they also deal with such
sensitive information daily. If even one of them gets leaked, it can mean a massive
loss for the company;

e Empowering enterprises: private blockchain solutions work to empower the enter-
prises as a whole rather than individual employees. In fact, companies do need great
technology to back up their processes. Furthermore, these solutions are mainly for
the internal systems of an enterprise. This is one of the best use cases of the private
blockchain;

e Stability: private blockchain solutions are stable. Basically, in every blockchain
platform, users have to pay a certain fee to complete a transaction. However,
the fee can increase significantly in public platforms due to the pressure of nodes
requesting transactions. When there are too many transaction requests, it takes
time to complete them. More so, as time increases, the fee increases drastically;

2.3 PUBLIC BLOCKCHAIN VERSUS PERMISSIONED BLOCKCHAIN 17

e Low fees: in private blockchain platforms, the transaction fees are meager. Unlike
public blockchain platforms, the transaction fee does not increase based on the
number of requests. So, no matter how many people request a transaction, the fees
will always stay low and accurate;

e Saves money: in reality, private blockchain saves much money. Maintaining a
private blockchain is relatively simple compared to public blockchains. Private
blockchain platforms take up only a few resources;

e No illegal activity: private blockchain platforms have authentication processes be-
fore any user logs into the network. What this process does is filter any intruders
trying to get into the system;

e Regulations: for enterprise companies that have to follow many rules and regula-
tions, private blockchain outlines all the rules, and the peer nodes have to follow
them.

2.3.2.1 Consensus for permissioned blockchain Since it is a controlled network
with n known participants and identified by the federation, classic Byzantine fault tol-
erance (BFT) protocols and deterministic Byzantine consensus can be adapted to the
blockchain (ANDROULAKI et al., 2018).

In addition, there is no need to use incentives to the agreement, as the federation of
stakeholders can establish its financial model of remuneration. Incentives, however, may
be used for other purposes but, different from the evidence-based consensus, they are not
essential to consensus (GREVE et al., 2018).

In the BF'T literature, replication consistency is maintained by two principles:

e No mistake: leaders are prevented from making mistakes, so only one possible
proposal per leader per rating;

e Proposal Security: a (higher-ranked) proposal can extend, but not modify, any
lower-ranking compromised log prefix (ABRAHAM; MALKHI et al., 2017).

2.3.2.2 The pros and cons of permissioned blockchain A significant advantage
of permissioned blockchain is speed. Permissioned blockchains have far fewer partici-
pants, meaning it takes less time for the network to reach a consensus. As a result, more
transactions can take place. Permissioned blockchains can process thousands of transac-
tions per second. Comparing that to Bitcoin’s seven transactions per second is a massive
difference (IORIO, 17).

Permissioned blockchains are also far more scalable. Since only a few nodes are
authorized and responsible for managing data, the network can process more transactions.
The decision-making process is much faster because it is centralized (SELFKEY, 2020).

However, the centralization of permissioned blockchain is one of its most significant
disadvantages. Blockchain was built to avoid centralization and permissioned blockchain
inherently becomes centralized due to its private network (BLOCKGEEKS, 2018).

18 THEORETICAL BACKGROUND

Trust is also a more significant issue when it comes to permissioned blockchain. The
credibility of a permissioned blockchain network relies on the credibility of the authorized
nodes. They need to be trustworthy as they are verifying and validating transactions.
The validity of records also can’t be independently verified (BLOCKGEEKS, 2018).

Security is another concern with permissioned blockchain. With fewer nodes, it is
easier for malicious actors to gain control of the network. Unfortunately, a permissioned
blockchain is far more at risk of being hacked or having data manipulated (ABRAHAM;
MALKHTI et al., 2017).

2.4 SMART CONTRACTS

A smart contract is a computerized transaction protocol that executes the terms of a
contract (SZABO, 1997). Its model has proposed a long time ago, and now this concept
can be implemented with blockchain.

Nick Szabo has standardized the term Smart contract (SC) in the 90s (GREVE et
al., 2018). It means: ”an internal transaction protocol format that executes the terms
of a contract. Their overall goals are to ensure common contractual conditions (such
as payment terms, liens, confidentiality, and even compliance), minimize malicious and
accidental exceptions, and the need for reliable intermediaries. Related economic objec-
tives include reducing fraud losses, arbitration and execution costs, and other transaction

costs.” (SZABO, 1997).

Smart contract searches can be classified into two types: development and evalua-
tion. Development can be the creation of smart contracts or smart contract platform
development. Recently, many smart contracts have been implemented on the Ethereum
blockchain (WOOD, 2018). Regarding the platform development, many smart contract-
ing platforms like Ethereum (WOOD, 2018) and Hawk (KOSBAA et al., 2016) are emerg-
ing (ZHENG et al., 2016). Evaluation means code analysis and performance evaluation.
Errors in smart contracting can bring catastrophic damage. Smart contract attack anal-
ysis is fundamental. On the other hand, smart contract performance is also vital to the
contract. With the rapid development of blockchain technology, more and more smart

contract based applications will be used, and companies need to consider the application’s
performance (ZHENG et al., 2016).

In the blockchain, smart contracts are created as scripts, stored with exclusive address-
ing on the blockchain itself (GREVE et al., 2018). They are triggered when addressing
a transaction to it. Then the script is executed independently and automatically, as

prescribed in all nodes in the network according to the data included in the transaction
(CHRISTIDIS; DEVETSIKIOTIS, 2016).

2.4.1 Smart Contracts Security

As an innovative technology, smart contracts have been applied in various business areas,
such as digital asset exchange, supply chains, crowdfunding, and intellectual property.
Unfortunately, many security issues in smart contracts have been reported in the media,
often leading to substantial financial losses. These security issues pose new challenges

2.5 SUPPLY CHAIN MANAGEMENT AND BLOCKCHAIN 19

to security research because the execution environment of smart contracts is based on
blockchain computing and its decentralized nature of execution. Thus far, many partial
solutions have been proposed to address specific aspects of these security issues. The
trend is to develop new methods and tools to detect common security vulnerabilities
automatically. However, smart contract security is systematic engineering that should be
explored from a global perspective, and a comprehensive study of issues in smart contract
security is urgently needed (HUANG et al., 2019).

Smart contracts interpret the code objectively - "The Code is the law”. However,
a code error was the target of a cyberattack, resulting in a deviation of about 50 mil-
lion dollars, forcing Ethereum to perform a hard fork to perform a recovery (BASHIR,
2018). Performing recoveries like this are not trivial, so the risks must be evaluated and
minimized.

Smart contracts should be concerned with blockchain threats:

e State of contract;
e Random generation;
e Time Restrictions.

Regarding the status of the contract, field and balance values determine the smart
contract state. A user, when invoking it, may not have certainty under its state, as other
transactions may modify it or a fork may have occurred. In some cases, this can create
vulnerabilities and lead to asset theft. In a random generation, some contracts generate
pseudo-random numbers with the same seed for all miners. This allows everyone to
have the same view as blockchain, providing a malicious miner to influence the network.
About time restriction, if a miner holds a stake in a contract, he can gain an advantage by
choosing an appropriate time stamp for the block he is exploring (GREVE et al., 2018).

2.5 SUPPLY CHAIN MANAGEMENT AND BLOCKCHAIN

In order to solve some problems with supply chain visibility and traceability, many Inter-
net of things technologies, such as RFID and wireless sensor network-based architectures
and hardware, have been applied. However, these technologies do not guarantee that the
information shared by supply chain members in the traceability systems can be trustful.
As a centralized organization, it can become a vulnerable target for bribery, and then the
whole system can not be trusted anymore (TIAN, 2017).

Suppose companies A, B, and C exercise such roles in the chain: producer, distributor,
and retailer. There is data centralization, single point of failure, and trust among the
parties in traditional systems. Sometimes, a third-part as a certificate authority must
guarantee some regulation, audition, or provide security among the participants. The use
of blockchain technology can help solve these problems since blockchain provides better
transparency, enhanced security, immutability of data, traceability, and decentralization.

Blockchain and distributed ledger technology underpinning cryptocurrencies such as
Bitcoin represent a new and innovative technological approach to realizing decentral-
ized, trustless systems. Indeed, the inherent properties of this digital technology provide

20 THEORETICAL BACKGROUND

fault-tolerance, immutability, transparency, and full traceability of the stored transaction
records, as well as coherent digital representations of physical assets and autonomous
transaction executions (CARO et al., 2018).

Blockchain enables end-to-end traceability, bringing a standard technology language
to the supply chain while allowing consumers to access the asset’s history of these products
through a web app. The need to track products across the complex supply chain to
the end consumer is often common: checking environmental impacts or simply ensuring
transparency for consumers (GALVEZ; MEJUTO; SIMAL-GANDARA, 2018).

Instead of storing data in a shadowy network system, blockchain allows all the goods’
information to be stored in a shared and transparent system for all the members along
the supply chain (TIAN, 2017). Monfared (ABEYRATNE; MONFARED, 2016) argued
about the potential benefit of blockchain technology in the manufacturing supply chain.
They proposed that the inherited characteristics of the blockchain enhance trust through
transparency and traceability within any transaction of data, goods, and financial re-
sources. Moreover, it could offer an innovative platform for a new decentralized and
transparent transaction mechanism in industries and businesses.

Many members are among the supply chain, including suppliers, producers, manu-
facturers, distributors, retailers, consumers, and certifiers. Each of these members can
add, update and check the information about the product on the blockchain as long as
they register as a user in the system. Each product also has a unique digital crypto-
graphic identifier that connects the physical items to their virtual identity in the system.
Users in the system also have their digital profile, which contains information about their
introduction, location, certifications, and association with products (TTAN, 2017).

Supply chain members can register themselves in the system through the register,
providing credentials and a unique identity to the members. After registration, public
and private cryptographic key pairs will be generated for each user. The public key can be
used to identify the user’s identity within the system, and the private key can be used to
authenticate the user when interacting with the system. This enables that each product
can be digitally addressed by the users when being updated, added, or exchanged to the
following user in the downstream position of the supply chain (CARO et al., 2018).

All members of the business network agree with the information acquired in each
transaction. Once consensus is reached, no permanent record can be changed. Each
information provides critical data that can potentially reveal security issues with the
product in question (GALVEZ; MEJUTO; SIMAL-GANDARA, 2018).

A smart contract encodes the combination of services and other conditions defined
in the contract. Therefore, the smart contract can automatically verify and apply these
conditions. It also verifies all information required by regulation to enable automated
verification of regulatory compliance (LU; XU, 2017). A smart contract, by default, has
no owner. Once deployed, its author has no special privileges. Unauthorized users may
accidentally trigger a function without permission. Therefore, smart contracts must have
internal permission to verify contract permissions.

The smart contract structural design has a significant cost impact if the blockchain
is public. The cost of contract implementation depends on its size because the code is
stored in the blockchain, which implies data storage fees proportional to the size of the

2.5 SUPPLY CHAIN MANAGEMENT AND BLOCKCHAIN 21

contract. Therefore, a structural design with more lines of code costs more. A blockchain
consortium does not have a coin or token, so the monetary cost is not a problem. However,
blockchain size is still a design concern because it grows with each transaction, and each
participant has a replica of the entire blockchain. In addition, a more structural design
may affect performance as it may require more transactions (LU; XU, 2017).

A blockchain must be universal and adaptable to specific situations (VALENTA;
SANDNER, 2017). The need to agree on a particular type of blockchain to be used puts
the parties under pressure. This is a significant disadvantage as blockchain technology is
progressing rapidly, and predicting the best choice for the future is quite tricky (GALVEZ;
MEJUTO; SIMAL-GANDARA, 2018).

On the other hand, there are advantages to applying the blockchain concept to the
enterprise supply chain. One of the most important is that all stakeholders involved in the
supply chain (raw material / producer, manufacturer, distributor, wholesaler, retailer)
are motivated by the need to demonstrate to customers the superior quality of their
methods and products (LU; XU, 2017).

In addition to serving the functions of a traceability system, a blockchain can be used
as a marketing tool. Because blockchains are fully transparent (IANSITI; LAKHANTI,
2017) and participants can control the assets in them (LIAO; CHANG; CHANG, 2011),
they can be used to enhance the image and reputation of a company (RIEL; FOMBRUN,
2007), drive loyalty among existing customers (PIZZUTI; MIRABELLI, 2015) and attract
new ones (SVENSSON, 2009).

Companies can easily distinguish themselves from competitors by emphasizing trans-
parency and monitoring product flow along the chain. In addition, quickly identifying a
source of contamination or loss can help protect a company’s brand image (MEJIA et
al., 2010) and alleviate the adverse impact of media criticism (DABBENE; GAY, 2011).

2.5.1 Transparency

The main goals of a blockchain are to facilitate information exchange, create a digital
twin of information and its workflow, and validate the quality of assets as they move
along the chain. These goals are achieved by allowing each participant to share claims,
evidence, and assessments of each other’s claims about the product. The journey of min-
eral resources along the supply chain is captured in a blockchain object called a "mineral
bundle”. At the journey’s end, the package combines all information provided by stake-
holders over the life of the mineral item. This information can be used to establish the
provenance, quality, sustainability, and many other attributes of mineral assets (MAR-
TIN; LEURENT, 2017).

2.5.2 Efficiency

Blockchain is an infrastructure that allows new transactions between players who do
not yet know or trust each other. Smart contracts are instructions that interface with
the blockchain protocol to automatically evaluate and possibly post transactions on the
blockchain (RASKIN, 2017).

Similarly, smart libraries are specialized sets of blockchain-compatible functionality

22 THEORETICAL BACKGROUND

that can be used locally or privately or shared and licensed to other blockchain partici-
pants and agents. All participants meet at the blockchain, evaluate the statements made
and notify their account holders when matches are found in quality, time, quantity, etc.
Buyers and sellers are matched by a shared but reliable need for data combined and used
by either party. So traceability does not have to wait for large company consortia to use
patterns and semi-mandatory or concentrated business practices to access the information

(GALVEZ; MEJUTO; SIMAL-GANDARA, 2018).

2.5.3 Safety and protection

Blockchains can also be used to emit and manage the creation of unique cryptographic
tokens (NYSTROM, 1999). Tokens can be made to represent the collateral value between
two participants (for example, future production to be sent in a specific field lot). Tokens
do not have to take value exchange for the financial settlement of invoices and contracts.
Instead, they represent a license to publish information that becomes uniquely valued in
proportion to the needs of others on the blockchain. The strategy around issuing these
encryption tokens, which need not be implemented in the initial system, is still being
defined (GALVEZ; MEJUTO; SIMAL-GANDARA, 2018).

2.6 HYPERLEDGER FABRIC

As the popularity of public blockchain and a few other derivative technologies grew, in-
terest in applying the underlying technology of the blockchain, distributed ledger, and
distributed application platform to more innovative enterprise use cases also grew. How-
ever, many enterprise use cases require performance characteristics that permissionless
blockchain technologies are unable (presently) to deliver. In addition, in many use cases,
the identity of the participants is a hard requirement, such as in the case of financial
transactions where Know-Your-Customer (KYC) and Anti-Money Laundering (AML)
regulations must be followed (POLGE; ROBERT; Le Traon, 2020).
For enterprise use, it is necessary to consider the following requirements:

e Participants must be identified /identifiable;
e Networks need to be permissioned;

e High transaction throughput performance;
e Low latency of transaction confirmation;

e Privacy and confidentiality of transactions and data of business transactions.

These requirements are a good fit with the required non-functional requirements for an
SCM project and the ones specified in Table A.2. While many early blockchain platforms
are currently being adapted for enterprise use, Hyperledger Fabric has been designed for
enterprise use from the outset.

2.6 HYPERLEDGER FABRIC 23

The Hyperledger project is a collaborative effort to create an enterprise-grade, open-
source distributed ledger framework, and codebase. It aims to advance blockchain tech-
nology by identifying and realizing a cross-industry open standard platform for distributed
ledgers, transforming how business transactions are conducted globally (CACHIN et al.,
2016).

Hyperledger Fabric implements a distributed ledger platform for running smart con-
tracts, leveraging familiar and proven technologies, with a modular architecture allowing
pluggable implementations of various functions (CACHIN et al., 2016). Hyperledger
Fabric is a widely used permissioned blockchain-primarily in enterprise settings to make
transactions between multiple businesses more efficient. This implementation defines as-
sets and the transaction instructions. Members of each permissioned network interact
with the ledger using chaincode. The membership identity service manages IDs and
authenticates participants. Also, the Access Control List provides additional layers of
permission (BLOCKGEEKS, 2018).

0 Execute
e -

/ Validate

Transacncn

Proposal
Response

r ransaction
Proposal

R4 I

Ordermg serwc
Submlt

O \ Commit

Figure 2.4 Hyperledger Fabric transaction flow (MANEVICH; BARGER; TOCK, 2018).

There are two types of nodes in Hyperledger Fabric: peer nodes and ordering nodes.
Peer nodes are responsible for executing and verifying transactions while ordering nodes
are responsible for ordering transactions and propagating the correct history of events
to the network. This increases efficiency and scalability by allowing peer nodes to batch
and process multiple transactions (BUTERIN, 2016).

Fabric Ledger comprises two components: a blockchain log to stores the immutable se-
quenced record of transactions in blocks and a State Database to maintain the blockchain’s
current state. In a public blockchain, there is no state database. It means that the chain’s
current state is always calculated by going through all the transactions in the ledger. For
speed and efficiency, the Fabric stores the current state and allows network members to
query it as a SQL-like transaction (BLOCKGEEKS, 2016).

Figure 2.4 shows the Hyperledger Fabric transaction flow. The client proposes a
transaction to the endorsing peers and collects transaction responses. The client then

24 THEORETICAL BACKGROUND

submits a transaction to the ordering service, which orders incoming transactions and cuts
them into blocks. Peers pull blocks from the ordering service, validate the transactions,
append them to the ledger, and apply valid transactions to the state.

The log aims to trap an asset providence or place of origin as it exchanges among
multiple parties. To track an asset’s provenance means to track where and when it was
created, and every time it was exchanged. Tracking an asset’s providence is extremely
important in business because it ensures that the business selling an item possesses a
chain of titles verifying their ownership of it. In typical databases, where only the current
state is kept and not a log of all transactions, tracking an asset providence becomes very
difficult. Add to this the fact that transacting businesses each keep an incomplete record
of the asset transaction, and it becomes nearly impossible (BLOCKGEEKS, 2016).

Fabric uses private channels to solve the problem of sensitive data which other parties
or competitors could see in a public blockchain. Private channels are restricted mes-
sage paths that can provide transaction privacy and confidentiality for a specific subset
of network members. All data are invisible and inaccessible to any network members
not explicitly granted access to that channel. This allows competing business interests
and any groups that require private, confidential transactions to coexist on the same
permissions network (BRABBANI, 2017).

Chapter

This section presents some conventional and Blockchain-based SCM systems, their main characteristics,

and how this work presents a different approach.

RELATED WORK

The rapid growth of Internet technologies allowed the onset of lots of technologies ap-
plied in traceability systems. In order to solve some problems with Supply Chain trace-
ability, many Internet of Things (IoT) technologies, such as Radio frequency identifica-
tion (RFID) and wireless sensor network-based architectures, have been applied. How-
ever, these technologies do not guarantee that the information shared by supply chain
members in the traceability systems can be trusted (TTAN, 2017).

Blockchain presents a whole new approach based on decentralization. Nonetheless,
being in its early stages has some challenges to deal with, in which scalability and per-
formance become mainly defiance to face the massive amount of data in the real world.
Through this technology, some solutions have been raised, as follows.

3.1 TRADITIONAL SYSTEMS

Microsoft’s Dynamics 365 is excellent for simple SCM needs, and it is just as accessible
as every other Microsoft suite on the market. Dynamics integrates with third-party
management systems, but it is primarily for ”simple needs.” Microsoft’s offering is not
so great for complex supply chain demands - but then, the more significant majority of
organizations have not got overly complex networks (BELLU, 2018).

Plex Systems was one of the very first supply chain and manufacturing Software-as-
a-Service (SaaS) ERP systems. The software is a cloud-based SCM that is very popular
with industry-leading companies - especially in the aerospace and automotive industries.
Unfortunately, though, for all its maturity and complex capabilities, Plex lets organiza-
tions down with its inability to support several implementation partners (PLEX, 2020).

Oracle NetSuite is a cloud-based supply chain and ERP system for the less complex
needs of moderately-sized companies and most SCM and ERP systems (ROLLING, 2016).
As ERP focused system, this project is focused on business management instead of SCM
traceability and information transparency (ROLLING, 2016).

25

26 RELATED WORK

SAP Supply Chain Management harnesses Al and the Internet of Things to provide
visibility and analytics to help the users plan, source, and deliver the goods and materials.
This is a real-time supply chain planning software that connects stakeholders (SNAPP,
2010).

These systems typically are ERP solutions focused on business management, con-
trolled by service providers. This centralized data storage becomes a single point of
failure and risks tampering. As a centralized organization, it can become a vulnerable
target for bribery, and then the whole system can not be trusted anymore. Also, as
proprietary systems, there are some concerns about reliability, security, decentralization,
immutability, transparency, and lack of trust among participants. There is no trusted
third party to ensure data reliability.

3.2 BLOCKCHAIN-BASED SYSTEMS

There are advantages of applying the Blockchain concept to a supply chain. One of the
most important is that all stakeholders involved in the supply chain are motivated to
demonstrate to customers the superior quality of their methods and products (LU; XU,
2017). In addition, a Blockchain can be used as a marketing tool. As Blockchains are fully
transparent and participants can control the assets in them, they can be used to enhance
the image and reputation of a company (RIEL; FOMBRUN, 2007), drive loyalty among
existing customers (PIZZUTI; MIRABELLI, 2015), and attract new ones (SVENSSON,
2009). In fact, companies can easily distinguish themselves from competitors by empha-
sizing transparency and monitoring product flow along the chain.

In (TTAN, 2017), it is proposed a system that combines HACCP (a food safety pro-
tocol), Blockchain, and IoT in order to provide food safety traceability. Each member
can add, update and check the information about the product on the Blockchain as long
as they register as a user in the system. Each product also has a unique digital crypto-
graphic identifier that connects the physical items to their virtual identity in the system.
This virtual identity can be seen as a product information profile.

The Everledger Diamonds project provides a Blockchain-based solution to facilitate
tracking from mine to consumer, enabling easier compliance against increasingly strict
measures from diamonds produced (CROSBY et al., 2016).

IBM Food Trust is a pilot project motivated by food contamination scandals world-
wide. The main goal is to tackling food safety in the supply chain using Blockchain
technology. This platform tracked pork in China and mangoes in the Americas (KA-
MATH, 2018).

3.3 COMPARISON WITH THE PRESENTED WORK

These projects are focused on specific products only and are closed projects. Still, there
is a general lack of standards for implementing a Blockchain approach for traceability. A
Blockchain must be universal and adaptable to specific situations (VALENTA; SAND-
NER, 2017). In addition, the need to agree on a particular type of Blockchain to be used
puts the parties under pressure.

3.3 COMPARISON WITH THE PRESENTED WORK 27

Compared to traditional systems, the great difference of this work is to provide the
non-functional requirements acquired by using the blockchain:

e More reliable operations;

e More democratic transactions;

e Process optimization;

e Ease of coordination between companies;

e Recording data in chronological order;

e Cost reduction;

e Distributed and autonomous platform.

In relation to blockchain-based systems:

e Not specific to a product type;

e Open source project and not closed;

Our work is focus on providing a Blockchain-based platform to facilitate the develop-
ment of applications for traceability in supply chain management.

28

RELATED WORK

Table 3.1 Related Works and their main characteristics, strategies and results.

solution

Related work Blockchain Solution Main Deficiency
Microsoft Dynamics 365 | No Simple SCM | Centralized solution.
needs Not a distributed and
autonomous platform.
Plex System No SaaS ERP system | Centralized solution.
Not easy to coordinate
between companies.
High cost. Private
System.
Oracle NetSuite No cloud-based sup- | Centralized solution.
ply chain and | High cost. Private
ERP system System.
SAP SCM No AT and the Inter- | High cost. Private Sys-
net of Things tem.
Tian Yes Oroposed sys- | Theoretical application.
tem that com- | Food related only.
bines HACCP,
Blockchain, and
[oT
Everledger Diamonds Yes Blockchain-based | Product specific. Not
solution an open source project.
High cost.
IBM Food Trust Yes Blockchain-based | Product specific. Not
solution an open source project.
High cost.
SCM-BP Yes Blockchain-based | Relies on a minimum

amount of participation
to obtain a reliable fore-
cast.

Chapter

PROPOSED SOLUTION

Supply Chain Management - Blockchain Platform (SCM-BP) has the general objective
to create a generic open source framework aiming at to be used in any supply chain
correlated to assets and products using a stateless microservices architecture.

A SCM platform relies on three main items: assets (the goods themselves), steps
(phases which products go through), and actors (people who transact assets during the
steps). Our approach is based on this triad that must be defined to create a new supply
chain. The workflow is divided into two phases: design time and execution time. Design
time is when an administrator configures the asset flow: define asset info, steps, actors and
create the relationship between these entities. Execution time is composed of creating,
moving, and tracking asset items through the supply chain.

In the design time, initially, a configuration file in JSON format is generated and read
in the Blockchain platform, adding the primary information for the correct functioning of
the chain. The mechanism for creating this configuration file is detailed in the following
section.

4.1 APPLICATION ARCHITECTURE

The main objective of this work is to create a generic platform for Supply Chain Man-
agement (SCM). SCM-BP is divided into four main modules described below: WebApp
- frontend, WebApp - backend, Blockchain network, and Data Storage. Figure 4.1 shows
the application architecture and its components. The WebApp - frontend is the compo-
nent which interacts with the user by providing web pages. WebApp - backend is the
component that works like a middleware by receiving REST calls from the front end,
and interacting with the lower layers. The Data Storage module main responsibility is
to storage content specific data and also files updated by the user. The Hyperledger
Platform Service is the Blockchain network where all the transactions are stored and the
chaincode is executed. Figure C.1 presents the main data structure.

Table A.1 defines the main functional requirements in order to be able to meet the ob-
jectives proposed by this project. They are characterized as non-functional requirements
for the proper functioning of the items in table A.2.

29

30

Web Browser

WebApp - FrontEnd

User

Interaction
Module

Backend
integration
Services

PROPOSED SOLUTION

HTTP /REST

3
>

WebApp - BackEnd

API
Gateway

Service Layer
/ Orchestrator

A

Resource
Locator

REST

Blockchain network

A

% REST Proxy / ABI

:

/ Hyperledger Network

v
|

org1.example.com

org2.example.com

chaincode1 |

chaincode1 |

P

A

Channel1

-‘1
T
>

4

Data Storage

Blockchain

S

. Orderer
Certificate Authority

/ @ World State

Figure 4.1 Application architecture of SCM-BP

4.1 APPLICATION ARCHITECTURE 31

4.1.1 WebApp - FrondEnd

WebApp - FrontEnd is a client-server computer application that the client (including
the user interface and client-side logic) runs in a web browser. This is a Single-page
application (SPA), a web application that interacts with the user by dynamically rewriting
the current page rather than loading entire new pages from a server. This approach avoids
interruption of the user experience between successive pages, making the application
behave more like a desktop application.

The application is built with Angular, a JavaScript library for building user interfaces.
It is a TypeScript-based open-source web application framework led by the Angular
Team at Google and by a community of individuals and corporations. Used as a base in
developing of single-page or mobile applications, Angular is optimal for fetching rapidly
changing data that needs to be recorded. However, fetching data is only the beginning of
what happens on a web page, which is why complex Angular applications usually require
additional libraries for state management, routing, and interaction with an API.

The Webapp - FrontEnd is divided into two main blocks, and these are classified ac-
cording to the interactions: User Interaction Modules and Backend Interactions Services.

4.1.1.1 User Interaction The User Interaction modules are responsible for provid-
ing web pages that will be rendered on the client’s web browser. These interactions are
provided by web pages grouped by the following components:

e Login page;

Application configuration module;

User handling module (actors - CRUD);

Data entry module (forms);

Data visualization module;

Reporting module.

The Login Module is responsible displaying the login and authentication alternatives
pages (e.g. ‘forgot my password’, ‘reset my password’). The Application Configuration
module provides the features of the creation/configuration of supply chain items and
supply chain flows (steps). This module is responsible for getting the information from the
user to generate the configuration JSON file in the backend. The User handling module
provides the features for the creation/configuration of Actors and Steps, complementing
the configuration file. The Data Entry module provides form pages that allow the actors
to enter data in the application, search and move asset items from a step to another. The
Data Visualization module is responsible for displaying the information about asset items
in the supply chain flow through steps. In the Reporting module, users can generate
reports/files organized in a narrative, graphic, or tabular form, prepared on ad hoc,
periodic, recurring, regular, or as required. Reports may refer to specific periods, events,
occurrences, or subjects presented in written form or any other format.

32 PROPOSED SOLUTION

4.1.1.2 Backend Integration Backend interactions happen via a service layer con-
sisting of:

e Authentication service;

Application setup service;

User creation service (actors);

Data entry service (forms);
e Data visualization service;

e Reporting service.

The Authentication Service role is to request information from an authenticating party
and validate it against the configured identity repository using the specified authentica-
tion module. After successful authentication, the user session is activated and validated
across all web applications participating in an Single Sign-on (SSO) environment. For
example, when a user or application attempts to access a protected resource, credentials
are requested by one (or more) authentication modules. Gaining access to the resource
requires that the user or application be allowed based on the submitted credentials.

Application setup service provides methods to configure and edit supply chain items,
and supply chain flows, defining which steps and sub-tasks will be present in this flow
and which information will be present in these steps.

The User creation Service is responsible for creating users and roles to log in and
use the application’s features. Only administrators are allowed to create new users (see
Actions and Actors). The Data entry service receives data from Ul forms and sends them
to the backend to be processed and stored. The Data visualization services provide infor-
mation about the supply chain: Assets, users, and transactions, to be used by the data
visualization module. The Report services generate files (Doc/PDF /XSL, etc...) from a
specific period with information about the supply chain: Assets, users, and transactions.

4.1.2 WebApp - BackEnd

WebApp - BackEnd is a Middleware that runs on the server. This Middleware (server-side
software) facilitates client-server connectivity, forming a middle layer between the app(s)
and the network: the server, the database, the operating system, and more. It receives
requests from the clients (in this case, the WebApp - FrontEnd) and contains the logic to
send the appropriate data back to the applicant over HT'TP and REST by providing a
standard way to interact with the front end and in the future with external applications.
These are the main conventions that provide structure to the request-response cycle
between clients and servers.

WebApp - BackEnd is an application built with Node.js, an application platform
where developers can write Javascript programs compiled, optimized, and interpreted by
the V8 virtual machine. Node.js can create quick, reliable websites and products in a much

4.1 APPLICATION ARCHITECTURE 33

efficient manner. Developing easy-to-scale real-time applications in other technologies is
a bit difficult, but JavaScript technologies made it more accessible.

The WebApp - BackEnd is composed of the API Gateway, Service Layer, and Resource
Locator, more detailed below.

4.1.2.1 API Gateway API Gateway is a managed service that enables easy creation,
publish, maintain, monitor, and secure REST APIs to act as a "gateway” for applications
to access data, business logic, or functionality in the backend services, such as workloads.
The API Gateway provides a simple uniform view of external resources to the inter-
nals of this application. It manages all tasks involved in receiving and processing API
calls, including traffic management, authorization and access control, and monitoring and
managing API versions.

DMZ [demilitarized zona) /

S

/ sk
Service A .

— > APl Gateway \ Service C
d —

Client [] \
| Service C }
‘ \-\-*' Service D

Figure 4.2 API Gateway.

Basically, the gateway is an interface that receives calls to its internal systems, being
a large gateway. It acts in five different ways:

e Filter for call traffic from different media;

e A single gateway to the various API’s that are exposed;
e Router: API and Rate Limit traffic router;

e Security engine with authentication and logging.

Gateway access can be done from many different devices. Therefore, it must have
the power to unify outgoing calls and deliver to the user content that can be accessed
from any browser and system. In this project, the gateway interaction happens with the
frontend web app. The Gateways as a Security Feature: In the APIs world, one of the
most subjects talked about issues is always security, and having an API Gateway is one
of the best solutions on the market to get complete control of API’s; because this pattern
addresses the so-called CIA (Confidentiality, Integrity, Availability) almost flawlessly.

34 PROPOSED SOLUTION

4.1.2.2 Service Layer A Service Layer defines an application’s boundary and its set
of available operations from the perspective of interfacing client layers. It encapsulates
the application’s business logic, controlling transactions and coordinating responses in
the implementation of its operations.

Enterprise applications typically require different interfaces to the data they store and
the logic they implement: data loaders, user interfaces, integration gateways, and others.
Despite their different purposes, these interfaces often need common interactions with the
application to access and manipulate its data and invoke its business logic. The interac-
tions may be complex, involving transactions across multiple resources and coordinating
several responses to an action. Encoding the logic of the interactions separately in each
interface causes much duplication. The service layer:

1. Centralizes external access to data and functions;
2. Hides (abstracts) internal implementation and changes;

3. Allows for versioning of the services.

The service layer acts as an orchestrator, controlling the flow of incoming and outcom-
ing information requests and responses. Orchestration allows to directly link process logic
to service interaction within workflow logic. This combines a business process model with
service-oriented modeling and design, realizing workflow management through a process
service model. Orchestration brings the business process into the service layer, positioning
it as a master composition controller.

4.1.2.3 Resource Locator Resource locators are components that abstract the per-
sistence layer. Their job is to provide an object that can help services discover and
persist information from/to the Data Storage Module. Information can be stored in the
Blockchain, Filesystem, or Database, and resource locators should know precisely where
to get/put data within them.

4.1.3 Blockchain

SCM-BP uses blockchain as a supply chain that tracks parts and service provenance,
ensures the authenticity of goods, blocks counterfeits, and reduces conflicts. In SCM-
BP, the Blockchain module consists of a smart contract, chaincode, and ledger. From the
application developer’s perspective, a smart contract and the ledger form the heart of a
Hyperledger Fabric blockchain system. Whereas a ledger holds facts about the current
and historical state of a set of business objects, a smart contract defines the executable
logic that generates new facts added to the ledger. Based on the discussion in Section 2.3
and to achieve the non-functional requirements exposed in Chapter A.3, the permissioned
blockchain was chosen and Hyperledger Fabric as its implementation.

4.1.3.1 Smart contract Before businesses can transact with each other, they must
define a common set of contracts covering common terms, data, rules, concept definitions,

4.1 APPLICATION ARCHITECTURE 35

and processes. Together, these contracts lay out the business model that governs all of
the interactions between transacting parties.

A smart contract defines the rules between different organizations in executable code.
Applications invoke a smart contract to generate transactions that are recorded on the
ledger.

4.1.3.2 Chaincode Hyperledger Fabric users often use the terms smart contract and
chaincode interchangeably. In general, a smart contract defines the transaction logic that
controls the lifecycle of a business object contained in the world state. It is then packaged
into a chaincode which is then deployed to a blockchain network. Think of smart contracts
as governing transactions, whereas chaincode governs how smart contracts are packaged
for deployment.

4.1.3.3 Ledger At the simplest level, a blockchain immutably records transactions
that update states in a ledger. A smart contract programmatically accesses two distinct
pieces of the ledger: a blockchain, which immutably records the history of all transactions
and a world state that holds a cache of the current value of these states, as it’s the current
value of an object that is usually required.

The ledger is the sequenced, tamper-resistant record of all state transitions in the
fabric. State transitions are a result of chaincode invocations (‘transactions’) submitted
by participating parties. FEach transaction results in a set of asset key-value pairs com-
mitted to the ledger as creates, updates, or deletes. The ledger comprises a blockchain
(‘chain’) to store the immutable, sequenced record in blocks, as well as a state database to
maintain the current fabric state. There is one ledger per channel. Each peer maintains
a copy of the ledger for each channel of which they are a member.

Smart contracts primarily put, get, and delete states in the world state and query the
immutable blockchain record of transactions.

o A get typically represents a query to retrieve information about the current state
of a business object.

e A put typically creates a new business object or modifies an existing one in the
ledger world state.

e A delete typically represents the removal of a business object from the current
state of the ledger but not its history.

Smart contracts have many APIs available to them. Critically, in all cases, whether
transactions create, read, update or delete business objects in the world state, the
blockchain contains an immutable record of these changes.

4.1.4 Data Storage

Data storage is a general term for archiving data in electromagnetic or other forms for use
by a computer or device. Different types of data storage play different roles in a computing

36 PROPOSED SOLUTION

environment. In addition to forms of hard data storage, there are now new options for
remote data storage, such as cloud computing and blockchain, that can revolutionize how
users save and access data.

SCM-BP uses three applications as data storage: Blockchain, Cloud filesystem, and
relational database, which are better detailed in the following subsections. Blockchains
grow continuously because of the amount of data and code in them, which is unchanging.
Therefore, an important design decision is to choose which data and calculations to keep
in and out of the chain.

4.1.4.1 Filesystem A cloud file system is a tiered storage system that provides
shared access to file data. Users can create, delete, modify, read and write files and
logically organize them into directory trees for intuitive access.

Cloud file-sharing can be defined as a service that gives multiple users simultaneous
access to a cloud file data set. Cloud file sharing security is managed with the user and
group permissions, allowing administrators to control access to shared file data tightly.

For all files uploaded and stored in the filesystem, a locally stored digital fingerprint
(hash) is saved in the blockchain, separately from the original files or content, to make it
easier to confirm whether data has been altered or manipulated in a particular organiza-
tion.

4.1.4.2 Database A relational database is a set of formally described tables from
which data can be accessed or reassembled in many different ways without reorganizing
the database tables. The standard user and Application programming interface (API)
of a relational database is the Structured Query Language (SQL). SQL statements are
used for interactive queries for information from a relational database and for gathering
data for reports.

4.1.4.3 Blockchain Since the blockchain consists of a Ledger and a world state
database (among other components), this can also be seen as part of the data stor-
age module as it stores data. Component 4.1.2.3 has the intelligence to decide where to
search and store data to optimize storage consumption.

4.2 ACTIONS AND ACTORS

A set of rules governs the system. These rules define how users interact with the system
and how the data is shared among the users. Moreover, once the rules are stored in the
blockchain, they can not be altered without broadcasting to all nodes and verified by
most of them.

4.2.1 Setup

Setup is the set of actions to configure the application. The setup phase is when a new
supply chain is created, or an existing one is updated or deleted. Users can also be
created, updated, and deleted by setup actions. When creating or editing a supply chain,

4.3 IMPLEMENTATION DETAILS 37

Admin users will define which steps, sub-steps, and information the supply chain flow will
contain. Users from member groups can add info and move an asset to each step in the
logistics network. Administrators are the only users in the Admin group. This actor type
has access to all areas of the program. It has the same abilities like all other user types
(configuring, moving the asset, and viewing flow). However, his primary responsibility is
to configure the application and perform the setup actions.

4.2.2 Data Insertion

Data insertion is the action that will fill the supply chain flow with data. Once the admin
user creates a new supply chain, it is ready to be populated with information. Member
and admin users are responsible for performing these actions. In the Data Insertion
phase, users can update information from a specific step and sub-step and move assets
depending on the rules applied in the setup phase. The most common actor types in
SCM are Raw material /Producer, Manufacturer, Distributor Wholesaler, and Retailer.

4.2.3 Visualization

Any user in the system can perform visualization actions. However, its main purpose
is to provide the end-user the capability to track the flow of an asset from the point of
origin to the point of consumption.

4.3 IMPLEMENTATION DETAILS

The chaincode is written in Golang and provides all contracts needed to proceed with
traceability in the application. All contracts for use in chaincode must implement the
interface contractapi. Contractinterface.

The first step is to create a JSON config file providing all information about these
three items. A configuration file includes assetld, a list of actors, and a list of ordered
steps. The chaincode processes this file through initLedger and create NewAsset functions.
A template for the config file can be found in appendix B.1.

Front-end WebApp enables users to define settings through a Configuration Page,
adding these to the configuration file, as shown in Figure 4.7. Assets, asset items, steps,
and actors are described in appendix B.2. There are create methods for each one, respon-
sible for creating an instance of these structs and save the state into the blockchain. Query
methods are responsible for interact with the information of any item in the blockchain.

The chaincode main function invokes the initLedger function, reads the configuration
files, and raises the platform enabling users to interact with the blockchain via exposing
its API.

When creating an asset item, an Assetltemld is generated. Each entity in the chain
will have its unique entity ID and timestamp when processing the transaction. By query-
ing Assetltemld, the user can easily track the current transaction information and status.
Finally, completed all steps, the blockchain will update deliverDate and mark the status
as completed once the last actor (generally the consumer) has received the order. The
CreateAsset function is detailed in appendix B.4.

38 PROPOSED SOLUTION

MoveAssetltem is the method to update an asset item when moved from one step to
another. It updates the CurrentOwnerld, the ProcessDate, information about prices, and
many other details of the transactions by the key/value map aditionallnfo. Its details are
in appendix B.5.

TrackAssetltem is the method responsible for tracking an asset item. It returns the
children’s tree of the given element and its ancestors from the beginning of the Supply
chain. This method uses the function getChildenTree to get the current item’s children
nodes. Appendix B.6 contains its implementation.

For audit purposes, some methods were implemented to get info about the blocks and
transactions stored in the ledger. These are the methods: getBlockByTxID, getChainlinfo,
getBlockByHash, getBlockByNumber, and getTransactionByID. Appendix B.7 contains
their implementation.

{ Users] [Actors ’ [Admin ’ ‘ SCM FE ‘ ‘ SCM BE ‘ Blockchain ‘

E Create new supply chain !

Create new SCM config file _._

Configure Steps update config file -

Configure Actors update config file

Activate SCM

Activate SCM

Upload config file

E Create asset item E Setup SCM
M E Create asset item

Create asset item

Move asset item

Change asset item owner

Change asset item owner

Track asssetitem |
1

Track asset item) System
Query asset item

L return
B Users
return

Figure 4.3 SCM User flow

Figure 4.3 shows the interaction flow from users with the Arion platform. Initially,
an admin persona creates and configure the SCM, adding information about the steps
and the users. After that, the admin can activate this SCM, and from that point, the
actors can interact with the SCM to provide information about an asset item and also
move this asset item through the supply chain. From that point, any user can track an
asset item to get information about the required goods.

The backend gateway exposes all the endpoints shown in table B.8. These endpoints
are integrated with the frontend and can be used in future work to integrate with a mobile
app or an external application.

4.4 PROOF OF CONCEPT 39

4.4 PROOF OF CONCEPT

For this project development, the agile Scrum method has been used. In Scrum, projects
are divided into cycles called sprints, with frequent meetings where the team can inform
what is being done and think of ways to improve the process quickly. Scrum proposes
constant project monitoring. Often the team will be meeting, exchanging experiences,
evaluating what has been done, and re-planning what will be done next.

During the requirements gathering, developers and other stakeholders sought to raise
and prioritize the needs of future software users (referred to as requirements). After
the requirements gathering, in the requirements specification stage, developers made a
detailed study of data collected in the previous activity, from where models were built to
represent the software system being developed.

At the architectural design stage of the system, two basic activities were performed:
architectural design (or high-level design) and detailed design (or low-level design). Some
aspects were considered at this stage of system design, such as system architecture, the
platform used, Database Manager System (DBMS) used, and graphical interface stan-
dard.

In the application development period, the backend and frontend components were
created from the computational description of the design phase. Pre-existing software
tools and class libraries were used to streamline activity. These tools and libraries were
defined during the architectural design and were referenced in sections 4.1.1 and 4.1.2.

For system validation, two main requirements were evaluated: the components and
the behavior of who will use the application. For the first point, functional, integration,
and security tests will be performed. For the second, this proof of concept was applied.

Appendix A presents the activities for project management, the user stories, and
non-functional requirements.

4.5 USE EXAMPLE

To accomplish this usage example, one Coffee supply chain will be defined and configured
accordingly. The supply chain of coffee beans is a lengthy process that involves growing
the beans, harvesting, hulling, drying, packing, bulking, blending, and finally roasting.
In between this process, the beans go through international transporters, export sellers,
and retailers like grocery stores, cafes, and specialty shops. A coffee tree can take four to
seven years before it yields its first crop of beans. The harvesting process is a very labor-
intensive exercise. Parts of the cherry must be removed to access the beans and need
to be laid out to dry. Once the beans are dried, they are packaged into large sacks and
passed onto the exporters. They are distributed to big companies in the coffee business
who take these beans and put them in industrial roasting and distribution centers. The
inventory stock from the roasting and distributing centers must be passed forward to
retailers. Through a web of transport, these coffee beans are delivered to thousands of
roasters, cafes, restaurants, grocery stores, and large chain retailers, where they finally
will come to the final users who will taste its flavor.

For this scenario, five steps will be taken: Extraction is the step where the coffee

40 PROPOSED SOLUTION

is growing and picking. Processing is when the beans are dry, roasting, grinding, and
packaging. Distribution is when the packages are shipping. Retail is about selling the
product, and the final step is the final user consumption.

Five fictitious business enterprises and a final customer are named as follows: Tasty
Coffee Farm, situated in Brazil, is an extractor responsible for all the information regard-
ing the extraction step in the supply chain. Café Brazilium is the manufacturer and is
responsible for the processing step. There will be two distribution companies. The first is
Edgard Cargo which is the Distributor company and is in charge of distribution details.
This company will send the coffee produced in Brazil to the United States. The second
is O’Neil Distlnc, a competitor of the first one. Marques BigSales is a United States
situated Delicatessen store and is at the helm of selling details. Allan Manoel Jr. is a
customer who wants to experiment with Brazilian coffee for the first time. Being very
curious, the customer would like to know the provenance and the information about the
coffee he drinks and where the coffee has passed.

As actors, each company above will have one user configured in the platform:

e Extractor: James Johnson.

Manufacturer: Donald Jackson.

Distribution: Elizabeth Taylor.

Distribution: Charlotte O’Neil.

Retailer: BigSales.
e Customer: Allan Manoel Jr.

The first step when creating a new Supply Chain is to create and configure the asset.
The admin user makes this action. By going through the setup wizard, first, the asset’s
info is requested:

Create Asset Q) N 9 2

Asset Actors Steps Summary

.A. Fill asset info

sssssss

Asset Name hescription
D erated if not Coffee Roasted coffee beans SCM

NEXT >

Figure 4.4 Fill in asset info.

Then the admin will add actors to the SCM, informing its types. Actors can be added,
updated, or deleted later on the actors’ list page.

4.5 USE EXAMPLE 41

Create Asset Search o i o .

] (2] o (4]

Asset Actors Steps Summary

2 Define Actors

® ® ® ® ® ®

Id Id Id Id Id Id

Name Name Name Name Name Name

James JohnsonX9 Donald Jackson Elizabeth Taylor Charlotte O'Neill bigSales Allan Manoel Jr.
Type Type Type Type Type Type

Extractor Manufacturer Distributor Distributor Retailer Customer

< PREVIOUS NEXT >

Figure 4.5 Adding actors.

The next phase in the wizard is to define the Supply chain steps, specifying the order
and binding it to the previous created actors’ types:

Create Asset Saneh o u p "

(] o (<] o

Asset Actors Steps Summary

Y) Define Steps

® ® ® ® ®

Id Id Id Id Id

Name Nome Name Name Name

Extraction Processing Distribution Retail Retail Customer

Actor Type ActorType Actor Type Actor Type Actor Type

Extractor v Manufacturer v Distributor M Retailer M Customer v

Figure 4.6 Defining steps.

The final step, before submitting the form, is to review all the information previously
added in the review asset details page, under the wizard:

42 PROPOSED SOLUTION

Create Asset o) s @ =2
o (] o o
hoset e sips Sunmary

Review Asset details:

1D:b0ab4c32-3c20-4072-bb07-8faec0f02805

Name: Coffee

Description: Roasted coffee beans SCM

Type: Extractor ‘Type: Manufacturer Type: Distributor Type: Distributor Type: Retailer Type: Customer
0de100b2b385 ba73e58b0fc1 Ocb3eb21absf 71ba59p54217 471ecae12163
Type: Extractor Type: Manufacturer Type: Distributor Type: Retailer Type: Customer

Figure 4.7 Review asset details before submitting.

Once created, the asset can be seen in the assets list, where the admin can perform
crud operations by the actions items. When clicking in the asset details, the current user
is redirected to the asset details page, where the main information about asset items.

Asset Details:

ASSETITEMS & ACTORS)Y STEPS CREATE ASSET ITEM

ID Owner Step Process Date Status Quantity Actions
a544bb43-61c6-48€9-9908-3edc17837dc3 James JohnsonX9 Extraction 2021-04-11721:49:49 Sold 4 Q ya < ~ i
600c17ca-9b87-4769-9038-d9899989ab42 James JohnsonX9 Extraction 2021-04-11721:49:58 Order initiated 2 Q ya < ~]
10043c19-baab-4083-bf52-bcb 10009475 Donald Jackson Processing 2021-04-11721:51:26 Sold 2 Q 7 < ~]

f446b7b-3709-41f2-0839-e6abe6912158 Donald Jackson Processing 2021-04-11721:51:38 Sold 2 Q ya < ~]

Figure 4.8 Asset Items list.

4.5 USE EXAMPLE 43

Asset Details: i= ASSETITEMS 2 ACTORS)) STEPS
James JohnsonX9 Donald Jackson Elizabeth Taylor Charlotte O'Neill
tracto Manufacturer Distributor Distributo
Q 7/ [] Q 7/ [] Q 7/ [] Q 7/ []
bigSales Allan Manoel Jr.
Retaile Custome
Q 7/ [] Q 7/ []
Figure 4.9 Actors list.
Asset Details: i= ASSET ITEMS 2 ACTORS) STEPS

» Extraction Processing » Distribution Retail
Step Order: Step Order: 2 Step Order: 3 Step Order: 4

Q e L] Q 4 [] Q 4 [} Q 4 L

Q

» Retail Customer
Step Order: 5

7 []

< BACK

Figure 4.10 Steps list.

As an admin, there are also button actions to perform crud operations. Beyond
Admins, actors responsible for the first step are allowed to create an asset item. This
action will redirect the user to the create asset item form shown below. In the use case,
a coffee crop was harvested by the extraction company. Information about this step is
added at this point.

44 PROPOSED SOLUTION

Create Asset Item

t tem ID
ted if not pro

Owner v

Delivery Date

Order Price Shipping Price Status Quantity

‘ CANCEL SUBMIT

Figure 4.11 Create asset item form.

Beyond the crud actions in the asset items list, there are also two new actions: move
asset item and track asset item. The first one shows a form where the user can move an
asset through the SCM steps. The user can only move this asset item to the next or the
previous step in the supply chain. Move an item back to the previous step is a feature
that can be used when a customer needs to return the product to whoever sold it, for
example, when a product comes defective, or the customer wants to exchange it.

To the use case, the companies are using this feature to move towards the products.
First, the Manufacturer company bought two lots from the same coffee crop of the extrac-
tion company. The manufacturer sold them into three lots after processing the products.
The first and the second one were sent to the first distributor company and the third to
the second distributor. The first distributor delivered the first lot to the retail company,
and from this lot, a cup of coffee was sold to the final customer. All these actions were
made from the moving asset item form below:

4.5 USE EXAMPLE 45

Move Asset Items

Move Assets Items between Steps

10043c1 3b-4083-bf52-bcb 10009475 Asset Item ID

Parent ID Parent ID

Owner & Extraction

Distribution =

ate
-2021 21:51:2

Delivery Date »

2021-05-11T15:06:54

Delivery Date

Order Price

Shipping Price

Status

Status

Quantity

e

Figure 4.12 Move asset item form.

Track asset item displays the tracked info about the chosen asset item. It shows
the children’s tree of the selected element and its ancestors. Figure 4.14 shows the
current status of the scenario described above by viewing the first asset item selected
(the extracted coffee crop).

When clicking on a node in the chart, the information about the selected node is
displayed under the diagram. Using this feature, the final user can track and see back
that its cup of coffee has been passed. This information would be essential if a problem
occurred. All the companies involved in this process could also track this information to
understand better what happened, identify the possible step where a problem arose, and
provide input for decision making.

46 PROPOSED SOLUTION

Track Asset ltem

D: 1-45f7. ID: 7acddaBe-25a5-475c.
» Step: Retail Customer » Step: Distribution
Actor: bigS: Actor: Allan Manoel Jr.

1d: a544bb43-61c6-48¢9-9908-3edc17837dc3 Parent ID: 0

Current step: Extraction Owner: James JohnsonX9

Process Date: 04-11-2121:40:49 Delivery Date: 03-07-20 07:04:05

Order Price: Shipping Price: Status: Sold Quantity: 4

< BACK

Figure 4.13 Track an asset item forward.

Track Asset ltem

» ID: a544bb: 8e9.. ID: 10043c19-baab-4083... ID: 64belff8-8981-427c... D: ae70c071-f07F-45M7... ID: 7acddaBe-25a5-475¢..

tep: Extractior » Step: Processing » Step: Distribution : Step: Distribution
Actor: James JohnsonX9 Actor: Donald Jackson Actor: Elizabeth Taylor : Actor: Allan Manoel Jr.

Figure 4.14 Track an asset item backward.

Usage of blockchain helped to solve the problem since all the information under the
blockchain is immutable. It can be audited since the information is stored and cannot be
modified or deleted. The system allows anyone to check the previous’ records traceability,
which can be achieved by arriving at the beginning of the chain. A blockchain does play
a key role in traceability, as it ensures the data logged is not tampered with once it has
been saved to the blockchain.

Chapter

CONCLUSION AND FUTURE WORK

Lately, Blockchain technology has been the subject of extensive research but rarely related
to supply chain traceability. Although some companies have launched pilot projects
using blockchain technology to manage their supply chains, no detailed information on
the technical implementation of such projects has been reported. Either way, the retail
industry has the potential to use this technology to improve traceability.

Even if some properties of blockchain implementation may be beneficial for supply
chain management, there are still few uses to support this claim. With so little research on
this subject, it is difficult for industry stakeholders to understand exactly how blockchain
technology can be used in their specific business.

This dissertation has presented a framework for new decentralized traceability systems
based on blockchain technology. Moreover, an example scenario was given to demonstrate
how it works in an enterprise supply chain. This system delivers real-time information
to all supply chain members on the safety status of goods, significantly reduces the risk
of centralized information systems, and brings more secure, distributed, transparent, and
collaborative to the supply chain management. The Framework can significantly improve
the development time of Supply Chain Management applications and provide efficiency
and transparency of products in a supply chain.

by joining the blockchain consortium, stakeholders can obtain benefits, but adopting
new technology such as blockchain is challenging for traditional industries due to the
learning curve and cost of integrating blockchain into existing systems. Negotiating
business details also takes time. In addition, the development of smart contracts must
take into account quality and adaptability. Transparency and data sharing are most
important in this regard. In general, blockchain is a good option for providing traceability
in supply chain management. However, the industry needs to look more closely at its
risks and opportunities.

Blockchain enables end-to-end traceability by bringing a common technological lan-
guage to the supply chain, while allowing consumers to access the story of goods on
their labels through any connected device. This characteristic has raised the need to

47

48 CONCLUSION AND FUTURE WORK

trace products through the complex supply chain from retail back to the farm: to trace
an outbreak; to verify that a product is kosher, organic, or allergen-free; or to assure
transparency to consumers. Digital product information such as farm origination details,
batch numbers, factory and processing data, expiration dates, storage temperatures, and
shipping details are digitally connected to items. Their information is entered into the
blockchain at each step of the process. All members of the business network agree upon
the information acquired in each transaction. Once consensus is reached, no perma-
nent record can be altered. Each piece of information provides critical data that may
potentially reveal safety issues with the product concerned. The record created by the
blockchain can also help retailers to manage the shelf life of products in individual stores
and further strengthen safeguards relating to food authenticity. Across ecosystems, busi-
ness model changes enabled by blockchain can bring strengthened trust, transparency
and a new link to value exchange. Whether it is individuals seeking to complete transac-
tions involving many parties, or enterprises collaborating across multiple organizational
silos, wherever any documents or transactions must be confirmed, settled, exchanged,
signed, or validated, there are usually frictions that can be avoided by using blockchain
technology to unlock greater economic value.

We propose a deeper evaluation that may analyze different product types and ac-
complish performance tests as future work. Besides, the role permission could be ap-
plied to guarantee that only allowed users could read/write sensitive information in the
blockchain. This could be made by using a flag in the additional info to show the field
as public/private information or, better, use the private data collection feature provided
by Hyperledger. Also, the asset item’s data structure could be changed to a tree data
structure for better performance results.

BIBLIOGRAPHY

101BLOCKCHAINS. public vs private blockchain. 2020. (https://101blockchains.com/
public-vs-private-blockchain). [Online; accessed 17-September-2020].

ABEYRATNE, S. A.; MONFARED, R. P. Blockchain ready manufacturing supply chain
using distributed ledger. () The Authors. Published by eSAT, 2016.

ABRAHAM, I.; MALKHI, D. et al. The blockchain consensus layer and bft. Bulletin of
EATCS, v. 3, n. 123, 2017.

ANDROULAKI, E. et al. Hyperledger fabric: a distributed operating system for permis-
sioned blockchains. In: ACM. Proceedings of the Thirteenth EuroSys Conference. [S.1.],
2018. p. 30.

ANTONOPOULOS, A. M. Mastering Bitcoin: Programming the open blockchain. [S.1.]:
7 O’Reilly Media, Inc.”, 2017.

AUNG, M. M.; CHANG, Y. S. Traceability in a food supply chain: Safety and quality
perspectives. Food control, Elsevier, v. 39, p. 172-184, 2014.

B., H. Blockchain: the solution for transparency in product supply chains. 2015. (https:
//www.provenance.org/whitepaper). [Online; accessed 17-september-2019].

BASHIR, I. Mastering blockchain: Distributed ledger technology, decentralization, and
smart contracts explained. [S.1.]: Packt Publishing Ltd, 2018.

BELLU, R. Microsoft Dynamics 365 for Dummies. [S.1.]: John Wiley & Sons, 2018.

BLOCKGEEKS. What is blockchain technology? a step-by-step guide for beginners.
BlockGeeks, 2016.

BLOCKGEEKS, I. A deeper look at different smart contract platforms. Blockgeeks Inc,
2018.

BRABBANI, H. What is Hashing & Digital Signature in The Blockchain? Blockgeeks.
[S.1.]: Blockgeeks, 2017.

BUTERIN, V. What Are Smart Contracts? A Beginner’s Guide to Smart Contracts.
[S.L]: Blockgeeks, 2016.

BUURMAN, J. Supply chain logistics management. [S.1.]: McGraw-Hill, 2002.

49

50 BIBLIOGRAPHY

CACHIN, C. et al. Architecture of the hyperledger blockchain fabric. In: CHICAGO, IL.
Workshop on distributed cryptocurrencies and consensus ledgers. [S.1.], 2016. v. 310, p. 4.

CACHIN, C,; VUKOLIC, M. Blockchain consensus protocols in the wild. arXiv preprint
arXw:1707.01873, 2017.

CARO, M. P. et al. Blockchain-based traceability in agri-food supply chain manage-
ment: A practical implementation. In: IEEE. 2018 IoT Vertical and Topical Summit on
Agriculture-Tuscany (I0T Tuscany). [S.1.], 2018. p. 1-4.

CHEGG. Forging digital signature. 2017. (https://www.chegg.com/homework-help/
questions-and-answers/forging-digital-signature-working-procedure-digital-signature-illustrated-figure-21-
[Online; accessed 17-September-2021].

CHRISTIDIS, K.; DEVETSIKIOTIS, M. Blockchains and smart contracts for the internet
of things. leee Access, leee, v. 4, p. 2292-2303, 2016.

CHRISTOPHER, M. 1. Logistics & supply chain management. [S.1.: s.n.], 2017.

COINDESK. State of Blockchain q1 2016: Blockchain Funding Overtakes Bitcoin. 2016.
(https://www.coindesk.com/state-of-blockchain-q1-2016). [Online; accessed 17-March-
2019).

COMSTOR, C. Blockchain piblica e privada qual a diferenca? 2017. (https://blogbrasil.
comstor.com/blockchain-publica-e-privada-qual-a-diferenca). [Online; accessed 22-Julho-
2019].

COOPER, M. C.; LAMBERT, D. M.; PAGH, J. D. Supply chain management: more than
a new name for logistics. The international journal of logistics management, Emerald
Group Publishing Limited, v. 8, n. 1, p. 1-14, 1997.

CROSBY, M. et al. Blockchain technology: Beyond bitcoin. Applied Innovation, v. 2,
n. 6-10, p. 71, 2016.

DABBENE, F.; GAY, P. Food traceability systems: Performance evaluation and opti-
mization. Computers and Electronics in Agriculture, Elsevier, v. 75, n. 1, p. 139-146,
2011.

DOUCEUR, J. R. The sybil attack. In: SPRINGER. International workshop on peer-to-
peer systems. [S.1.], 2002. p. 251-260.

FOLINAS, D.; MANIKAS, I.; MANOS, B. Traceability data management for food chains.
British Food Journal, Emerald Group Publishing Limited, v. 108, n. 8, p. 622-633, 2006.

FORMIGONI, J. Tecnologia Blockchain: wma visio geral. 2017. (https://www.cpqd.
com.br/wp-content/uploads/2017/03/cpqd-whitepaper-blockchain-impresso.pdf). [On-
line; accessed 17-September-2020).

BIBLIOGRAPHY 51

FORRESTER, J. W. Industrial dynamics. a major breakthrough for decision makers.
Harvard business review, v. 36, n. 4, p. 37-66, 1958.

GALVEZ, J. F.; MEJUTO, J.; SIMAL-GANDARA, J. Future challenges on the use of
blockchain for food traceability analysis. TrAC Trends in Analytical Chemistry, Elsevier,
v. 107, p. 222-232, 2018.

GOLAN, E. H. et al. Traceability in the US food supply: economic theory and industry
studies. [S.1.], 2004.

GREVE, F. et al. Blockchain e a revolugao do consenso sob demanda. Livro de Minicursos
do SBRC, v. 1, p. 1-52, 2018.

GRYNA, F. M.; JURAN, J. M. Juran’s quality control handbook. [S.l.]: McGraw-Hill,
1998.

HORIUCHI, F. S. Rastreabilidade de um modelo de cadeia produtiva agricola general-
izado em uma rede blockchain. 2015.

HUANG, Y. et al. Smart contract security: A software lifecycle perspective. IEEE Access,
IEEE, v. 7, p. 150184-150202, 2019.

IANSITI, M.; LAKHANI, K. R. The truth about blockchain. Harvard Business Review,
v. 95, n. 1, p. 118-127, 2017.

IORIO, E.-D. D. Blockchain Applications That Are Transforming Society. [S.1.]: Block-
geeks, 17.

KAMATH, R. Food traceability on blockchain: Walmart’s pork and mango pilots with
ibm. The Journal of the British Blockchain Association, The British Blockchain Associ-
ation, v. 1, n. 1, p. 3712, 2018.

KOSBAA, M. et al. Theblockchain modelofcryptographyandprivacy preservingsmartcon-
tracts. SecurityandPrivacy (SP), 20161EEESymposiumon. IEEE, 2016.

KOSTAREV, G. Review of blockchain consensus mechanisms. [S.l.]: Waves Plat-
form.[Consulta: 12 Julho, 2018]. Disponivel em:j https://blog ..., 2017.

LAMPORT, L.; SHOSTAK, R.; PEASE, M. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), ACM, v. 4, n. 3,
p. 382-401, 1982.

LIAO, P.-A.; CHANG, H.-H.; CHANG, C.-Y. Why is the food traceability system un-
successful in taiwan? empirical evidence from a national survey of fruit and vegetable
farmers. Food Policy, Elsevier, v. 36, n. 5, p. 686-693, 2011.

LITKE, A.; ANAGNOSTOPOULOS, D.; VARVARIGOU, T. Blockchains for supply
chain management: Architectural elements and challenges towards a global scale de-
ployment. Logistics, Multidisciplinary Digital Publishing Institute, v. 3, n. 1, p. 5, 2019.

52 BIBLIOGRAPHY

LONDE, B. J. L. Supply chain management: myth or reality? Supply Chain Management
Review, v. 1, n. 1, p. 6-7, 1997.

LONDE, B. J. L.; MASTERS, J. M. Emerging logistics strategies. International journal
of physical distribution & logistics management, MCB UP Ltd, 1994.

LU, Q.; XU, X. Adaptable blockchain-based systems: A case study for product traceabil-
ity. IEEE Software, IEEE, v. 34, n. 6, p. 21-27, 2017.

MANEVICH, Y.; BARGER, A.; TOCK, Y. Service discovery for hyperledger fabric. In:
Proceedings of the 12th ACM International Conference on Distributed and Event-Based
Systems. [S.1.: s.n.], 2018. p. 226-229.

MARTIN, C.; LEURENT, H. Technology and innovation for the future of production:
Accelerating value creation. In: World Economic Forum, Geneva Switzerland. [S.1.: s.n.],
2017.

MEJIA, C. et al. Traceability (product tracing) in food systems: an ift report submitted
to the fda, volume 2: cost considerations and implications. Comprehensive Reviews in
Food Science and Food Safety, Blackwell Publishing, v. 9, n. 1, p. 159-175, 2010.

MENTZER, J. T. et al. Defining supply chain management. Journal of Business logistics,
Wiley Online Library, v. 22, n. 2, p. 1-25, 2001.

MERKLE, R. C. A certified digital signature. In: SPRINGER. Conference on the Theory
and Application of Cryptology. [S.1.], 1989. p. 218-238.

MICHAEL, J.; COHN, A.; BUTCHER, J. R. Blockchain technology. The Journal, 2018.

MINGXTAOQO, D. et al. A review on consensus algorithm of blockchain. In: TEEE. 2017
IEEE International Conference on Systems, Man, and Cybernetics (SMC). [S.1.], 2017.
p. 2567-2572.

NAKAMOTO, S. et al. Bitcoin: A peer-to-peer electronic cash system. Citeseer, Working
Paper, 2008.

NARAYANAN, A. et al. Bitcoin and cryptocurrency technologies: A comprehensive in-
troduction. [S.1.]: Princeton University Press, 2016.

NYSTROM, M. Pkes# 15-a cryptographic token information format standard. In: Smart-
card. [S.1.: s.n.], 1999.

P1ZZUTI, T.; MIRABELLI, G. The global track&trace system for food: General frame-
work and functioning principles. Journal of Food Engineering, Elsevier, v. 159, p. 16-35,
2015.

PLEX. supply chain and collaboration. 2020. (https://www.plex.com/products/
supply-chain/supply-chain-and-collaboration). [Online; accessed 17-September-2020].

BIBLIOGRAPHY 53

POLGE, J.; ROBERT, J.; Le Traon, Y. Permissioned blockchain frameworks in the
industry: A comparison. ICT Express, 2020. ISSN 2405-9595. Disponivel em: (https:
//www.sciencedirect.com/science/article /pii/S2405959520301909).

RASKIN, M. The law and legality of smart contracts. 1 Georgetown Law Technology
Review 304. [S.1.]: GeorgeTown, 2017.

RIEL, C. B. V.; FOMBRUN, C. J. Essentials of corporate communication: Implementing
practices for effective reputation management. [S.1.]: Routledge, 2007.

ROLLING, T. Using netsuite in business curriculum. Journal of Higher Education Theory
and Practice, North American Business Press, v. 16, n. 5, p. 42, 2016.

ROSS, D. F. Competing through supply chain management: creating market-winning
strategies through supply chain partnerships. [S.l.]: Springer Science & Business Media,
1997.

SAUER, P. C.; SEURING, S. Extending the reach of multi-tier sustainable supply chain
management—insights from mineral supply chains. International Journal of Production
Economics, Elsevier, 2018.

SELFKEY. Understanding Public vs. Private Blockchain. 2020. (https://seltkey.org/
understanding-public-vs-private-blockchain/). [Online; accessed 17-September-2020)].

SNAPP, S. Discover SAP SCM. [S.1.]: Galileo Press, 2010.

SVENSSON, G. The transparency of scm ethics: conceptual framework and empirical
illustrations. Supply Chain Management: An International Journal, Emerald Group Pub-
lishing Limited, v. 14, n. 4, p. 259-269, 2009.

SWAN, M. Blockchain: Blueprint for a new economy. [S.1.]: 7 O’Reilly Media, Inc.”,
2015.

SZABO, N. The idea of smart contracts. Nick Szabo’s Papers and Concise Tutorials, v. 6,
1997.

TIAN, F. A supply chain traceability system for food safety based on haccp, blockchain
& internet of things. In: IEEE. 2017 International Conference on Service Systems and
Service Management. [S.1.], 2017. p. 1-6.

VALENTA, M.; SANDNER, P. Comparison of ethereum, hyperledger fabric and corda.
[ebook] Frankfurt School, Blockchain Center, 2017.

WOOD, E. A Secure Decentralised Generalised Transaction Ledger. 2018.

ZHENG, Z. et al. Blockchain challenges and opportunities: A survey. Work Pap.—2016,
2016.

Appendix

PROJECT MANAGEMENT

A.1 ACTIVITIES

Once the software architecture and its main modules were determined, these components
were divided into activities for better project management. These activities are listed
below, segregated by the main modules.

A.1.1 Front end
e Create login page
e Create application configuration module
e Create user creation module (actors)
e Create data entry module (forms)
e Create data visualization module
e Create report module
e Create authentication service
e Create application setup service
e Create user creation service (actors)
e Create data entry service (forms)
e Create data visualization service

e Create reporting service

95

56 PROJECT MANAGEMENT

A.1.2 Back end

e Gateway Creation

— Create authentication endpoint

— Create application configuration endpoint
— Create user creation endpoint (actors)

— Create data entry endpoint (forms)

— Create data visualization endpoint

— Create report endpoint
e Service Creation

— Create authentication service

— Create application setup service

— Create user creation service (actors)
— Create data entry service (forms)

— Create data visualization service

— Create reporting service
e Resource Locator Creation

— Create Connector with File system
— Create Connector with Hyperledger Blockchain

— Create Connector with Oracle Database

A.1.3 Hyperledger Blockchain

e Configure the blockchain network
e Create chaincode (Smart contract)

e Package and install the chaincode in the network

A.2 USER STORIES

Table A.1 presents all the user stories for artifacts development, used in the system and
managed according to agile methodologies.

A.2 USER STORIES

Table A.1 Supply Chain Management - Blockchain Platform (SCM-BP) User Stories

US-1

As an administrator, clicking “new” on the supply chain list page takes you
to the chain configuration page, with empty settings (no phases, sub-phases,
and fields).

US-2

As an administrator, clicking “edit” on the supply chain list page takes you
to the chain configuration page, with the settings filled in (with phases,
sub-phases, and fields already registered).

US-3

As an administrator, when clicking delete on the supply chain list page, a
modal should appear requesting deletion confirmation.

US-4

As an administrator, when clicking confirm deletion on the supply chain
list page, an alert should appear stating the deletion result: alert-success or
alert-danger.

US-5

As an administrator, on the creation or editing screens of a chain, the admin-
istrator must tell from each section which user types can enter information
in that section.

US-6

As an administrator, when clicking on the User List page redirects to the
user creation page with its empty settings.

US-7

As an administrator, on the user creation page, the admin have to enter
the type of user (Admin, Producer, Manufacturer, Distributor, Wholesaler,
Retailer, End User).

US-8

As an administrator, clicking “edit” on the User List page takes you to the
user creation page, with the settings filled in (with the previously entered
data).

US-9

As an administrator, when clicking delete on the User List page, a modal
should appear asking for deletion confirmation.

US-10

As an administrator, when clicking confirm deletion on the User List page,
an alert should appear stating the deletion result: alert-success or alert-
danger.

US-11

As a”Member” User (Admin, Producer, Manufacturer, Distributor, Whole-
saler, Retailer), clicking Move Asset redirects to the information entry page
in the chain.

US-12

As a "Member”, each user can only enter information regarding the al-
lowed phase in the access rules (e.g., a distributor cannot enter exploration
information) as defined in use case 5.

US-13

As any user (Admin, Member, or End User), clicking Track Asset will take
you to a page with a list of all assets paged and filtered by date in descending
order (most current to oldest).

US-14

As any user (Admin, Member, or End User), by clicking on “Track Asset”,
the user can enter an Id in the input search to search.

US-15

As any user (Admin, Member, or End User), by clicking on “Track”, the
user will go to a page with all information of the respective asset, from its
conception to the current state.

57

o8 PROJECT MANAGEMENT

A.3 NON-FUNCTIONAL REQUIREMENTS

Table A.2 Non-functional requirements of SCM-BP
NF-1: Usability | The available product, corresponding API’'s and documentation
should be clear enough to allow for the developers to perform the

implementation.
NF-2: Speed and latency: The throughput and latency on Hyperledger
Performance have already been tested, and the throughput is not expected to

be as high as a centralized data system. But, overall, the time to
synchronize the information from one company to another might
increase; The goal is to make the product be as fast as needed to
support the businesses, even if it does not have better performance
than other alternatives, since what the target here is the addition
of new functionalities (shared ledger);

Precision and accuracy: The product shall record the data just
as it was entered, and predictions as to whether a product has any
mismatching entries shall always be justifiable;

Reliability and availability: The product shall not always be
available unless all of the nodes fail at once, which is almost im-
possible, unless a coordinated attack were to happen; If some of
the nodes happen to fail, the response time of the system might be
lower than expected;

Scalability: The product should scale to hundreds of companies,
which would require a similar number of nodes;

NF-3: The product is expected to run on Linux-based systems, compati-
Maintainability | ble with the Docker, nodejs, and golang versions that Hyperledger
and portability | Fabric uses. More specifically, Oracle Cloud services have servers
with the required setup for this. Creating new nodes or moving
an existing one should be an easy process, without much compli-
cation, other than starting the node software on the environment
and closing an existing one, if needed.

NF-4: Security | Privacy: The system must ensure appropriate visibility of transac-
tions and products, which might be privacy sensitive; sharing some
data would pose a threat or could have negative effects for some of
the companies; otherwise, transactions should also be secure, au-
thenticated, and verifiable;

Immutability: No one can make changes to the contents of the
ledger;

Authorization: All changes to any data should be approved by
the people that possess the data or will be affected by these changes
directly. A shipment delivery transaction should, for instance, be
approved by both the person delivering and the person receiving
the shipment.

Appendix

SMART CONTRACT AND BACKEND ENDPOINTS

B.1 TEMPLATE FOR CONFIG FILE

{
"AssetId":"assetID",
"AssetName":"assetName",
"AssetDescription":"assetDescription",
"Actors": [
{
"actorType":"type",
"aditionallInfo": [
{
"key":"value"
}
]
b
1,
"Steps": [
{
"StepIld":"stepID",
"StepName": "stepName",
"StepOrder":1,
"ActorType":"actorType",
"aditionalInfo": [
{
"key":"value"
+
]
}
]
b

29

60

SMART CONTRACT AND BACKEND ENDPOINTS

B.2 ASSETS, ASSET ITEMS, STEPS, AND ACTORS STRUCTS

type Actor struct {
ActorId string "~ json:"actorId""
ActorType string ~json:"actorType""
ActorName string ~json:"actorName""
Deleted bool “json:'"deleted""
AditionalInfo map[string]string ~json:" aditionallnfo""
b
type Step struct {
Stepld string " json:'"stepId""
StepName string ~json:'stepName""
StepOrder uint " json:"stepOrder""
ActorType string ~json:"actorType'""
Deleted bool “json:"deleted""
AditionalInfo map[stringlstring ~json:" aditionallnfo"”
}
type Assetltem struct {
AssetItemld string “json:"assetItemId""
OwnerId string “json:"ownerId""
StepID string “json:"stepID""
ParentID string " json:"parentID""
Children [Istring ~json:"children"";
ProcessDate string “json:"processDate""”
DeliveryDate string “json:"deliveryDate""
OrderPrice string “json:"orderPrice""
ShippingPrice string “json:"shippingPrice""
Status string “json:"status""
Quantity string “json:"quantity""
Deleted bool “json:'"deleted""
AditionalInfo map[string]string ~json:" aditionallnfo""
b
type Asset struct {
Assetld string “json:"assetId""
AssetName string “json:"assetName""
Description string “json:"description"”
AssetItems []AssetItem ~json:'"assetItems'""
Actors [JActor “json:"actors"”
Steps [1Step “json:"steps"”
Deleted bool “json:'"deleted""

AditionalInfo map[string]string

“json:"aditionalInfo""

B.3 MAIN FUNCTION 61

B.3 MAIN FUNCTION

func main() {

chaincode, err := contractapi.NewChaincode(new(SmartContract))
if err != nil {
fmt . Printf ("Error create chaincode: %s", err.Error())
return
+
if err := chaincode.Start(); err != nil {

fmt.Printf ("Error starting chaincode: %s", err.Error())
}
}

B.4 CREATE ASSET

func (s *SmartContract) CreateAsset(
ctx contractapi.TransactionContextInterface, assetId string,
assetName string, description string, assetItems []AssetItem,
actors [JActor, steps []Step, aditionallInfo map[stringlstring) error {

if err !'= nil {
return fmt.Errorf (
"Failed to read the data from world state: %s", err

if assetJSON != nil {
return fmt.Errorf("The asset %s already exists", assetID)

}

asset := Asset {
AssetId: assetld,
AssetName: assetName,
Description: description,
AssetlItems: assetltems,
Actors: actors,
Steps: steps,
Deleted: false,
aditionalInfo: aditionalInfo,

}

assetAsBytes, _ := json.Marshal(asset)

if err !'= nil {

62 SMART CONTRACT AND BACKEND ENDPOINTS

return err
}
return ctx.GetStub() .PutState("ASSET_"+assetId,assetAsBytes)
}

B.5 MOVE ASSET ITEM

func (s *SmartContract) MoveAssetItem(
ctx contractapi.TransactionContextInterface,
assetItemID string, newAssetItemlID string, stepID string,
newOwnerID string, orderPrice string, shippingPrice string,
status string, quantity string,
aditionalInfo map[stringl]string) error {

assetItemJSON, err := s.QueryAssetItem(ctx, assetItemID)
if err != nil {
return err
+
if assetItemJSON == nil {
return fmt.Errorf("The assetItem %s does not exists", assetItemID)

3

newAssetItem := AssetItem{
AssetItemID: newAssetItemID,
OwnerID: newOwnerID,
StepID: stepID,
ParentID: assetItemID,
Children: [1string{},
ProcessDate: time.Now() .Format ("2006-01-02 15:04:05"),
OrderPrice: orderPrice,
ShippingPrice: shippingPrice,
Status: status,
Quantity: quantity,
Deleted: false,
AditionalInfoMap: aditionallnfo,
}
assetItemAsBytes, err := json.Marshal(newAssetItem)
if err !'= nil {
return err
}

return ctx.GetStub() .PutState(
"ASSET_ITEM_"+newAssetItemID, assetItemAsBytes

B.6 TRACK ASSET ITEM 63

B.6 TRACK ASSET ITEM

func (s *AssetTransferSmartContract) TrackAssetItem(
ctx contractapi.TransactionContextInterface,
assetItemID string) ([]*AssetItem, error) A{

assetItem, err := s.QueryAssetItem(ctx, assetItemID)
log.Print("tracking info from assetItem id: ", assetItem.AssetItemID)
if err != nil {

return nil, fmt.Errorf (
"Failed to read from world state. %s", err.Error()

)
}
if assetItem == nil {

return nil, fmt.Errorf("%s does not exist", assetItemID)
}

trackedItems := make([]*AssetItem, 0)

//first add the children to tracked items
children, err := s.getChildenTree(ctx, assetItem)
if err != nil {
return nil, fmt.Errorf(
"Failed to read from world state. %s", err.Error()

for _, child := range children {
fmt.Println(child)
trackedItems = append(trackedItems, child)
}

//then, add the current item to tracked items
trackedItems = append(trackedItems, assetltem)

//finally, add the ancestor of current ttem to tracked items
for {
currentParentId, err := strconv.Atoi(assetItem.ParentID)
if (currentParentId <= 0) {
break

64

by

SMART CONTRACT AND BACKEND ENDPOINTS

}
parentAssetItem, err := s.QueryAssetItem(ctx, assetItem.ParentID)
if err !'= nil {

return nil, fmt.Errorf(
"Failed to read from world state. %s", err.Error()

)
}
newParentId, err := strconv.Atoi(parentAssetItem.ParentID)
log.Print("newParentId: ", newParentId)

trackedItems = append(trackedItems, parentAssetItem)
assetItem = parentAssetItem

¥

return trackedItems, nil

func (s *AssetTransferSmartContract) getChildenTree(

ctx contractapi.TransactionContextInterface,
assetItem *AssetItem) ([]*AssetItem, error) {

tree := make([]*AssetItem, 0)
log.Print("len(assetItem.Children): ", len(assetItem.Children))
if len(assetItem.Children) == 0 {
tree = append(tree, assetItem)
} else {
for _, childId := range assetItem.Children {
childAssetItem, err := s.QueryAssetItem(ctx, childId)
if err !'= nil {
return nil, fmt.Errorf(
"Failed to read from world state. %s", err.Error()
)
}
if childAssetItem == nil {
return nil, fmt.Errorf("%s does not exist", childId)

b

childrenTree, err := s.getChildenTree(ctx, childAssetItem)
for _, child := range childrenTree {
tree = append(tree, child)
b
+
tree = append(tree, assetItem)

3

return tree, nil

B.7 AUDIT METHODS 65

B.7 AUDIT METHODS

func getTransactionByID(
vledger ledger.PeerLedger, tid []byte) pb.Response {

if tid == nil {
return nil, fmt.Errorf("Transaction ID must not be nil.")

+
processedTran, err := vledger.GetTransactionByID(string(tid))
if err != nil {
return nil, fmt.Errorf(
"Failed to get transaction with id %s, error %s",
string(tid), err.Error()
)
}
bytes, err := protoutil.Marshal(processedTran)
if err !'= nil {
return nil, fmt.Errorf(err.Error())
}

return shim.Success(bytes)

func getBlockByNumber (
vledger ledger.PeerLedger, number []byte) pb.Response {

if number == nil {
return nil, fmt.Errorf("Block number must not be nil.")
}
bnum, err := strconv.ParseUint(string(number), 10, 64)
if err !'= nil {
return nil, fmt.Errorf(
"Failed to parse block number with error %s", err
)
}
block, err := vledger.GetBlockByNumber (bnum)
if err !'= nil {

return nil, fmt.Errorf(
"Failed to get block number %d, error %s", bnum, err
)
+

66 SMART CONTRACT AND BACKEND ENDPOINTS

bytes, err := protoutil.Marshal(block)
if err !'= nil {
return nil, fmt.Errorf(err.Error())

}
return shim.Success(bytes)
func getBlockByHash(
vledger ledger.PeerLedger, hash []byte) pb.Response {

if hash == nil {
return nil, fmt.Errorf("Block hash must not be nil.")

}
block, err := vledger.GetBlockByHash(hash)
if err != nil {
return nil, fmt.Errorf(
"Failed to get block hash %s, error %s", string(hash), err
)
}

bytes, err := protoutil.Marshal(block)
if err != nil {
return nil, fmt.Errorf(err.Error())

3

return shim.Success(bytes)

func getChainInfo(vledger ledger.PeerLedger) pb.Response {
binfo, err := vledger.GetBlockchainInfo()
if err != nil {
return nil, fmt.Errorf (
"Failed to get block info with error Js", err
)

}
bytes, err := protoutil.Marshal(binfo)

if err !'= nil {
return nil, fmt.Errorf(err.Error())

3

return shim.Success(bytes)

func getBlockByTxID(

B.7 AUDIT METHODS 67

vledger ledger.PeerLedger, rawTxID []byte) pb.Response {
txID := string(rawTxID)
block, err := vledger.GetBlockByTxID(txID)
if err !'= nil {
return nil, fmt.Errorf(
"Failed to get block for txID %s, error %s", txID, err
)
+
bytes, err := protoutil.Marshal(block)
if err != nil {
return nil, fmt.Errorf(err.Error())
}

return shim.Success(bytes)

func (e *LedgerQuerier) Invoke(stub shim.ChaincodeStubInterface) pb.Response {
args := stub.GetArgs()
fname := string(args[0])
cid := string(args([1])
sp, err := stub.GetSignedProposal()
name, err := protoutil.InvokedChaincodeName (sp.ProposalBytes)
targetLedger := e.ledgers.GetLedger(cid)
gscclogger.Debugf ("Invoke function: %s on chain: %s", fname, cid)
res := getACLResource(fname)

switch fname {
case GetTransactionByID:

return getTransactionByID(targetLedger, args[2])
case GetBlockByNumber:

return getBlockByNumber (targetLedger, args[2])
case GetBlockByHash:

return getBlockByHash(targetLedger, args[2])
case GetChainInfo:

return getChainInfo(targetLedger)
case GetBlockByTxID:

return getBlockByTxID(targetLedger, args[2])
}

return nil, fmt.Errorf(
"Requested function %s not found.", fname

)
}

68 SMART CONTRACT AND BACKEND ENDPOINTS

B.8 BACKEND ENDPOINTS

POST /actors creates a new actor

GET /actors retrieves the actors’ list
PUT Jactors/:id updates an existing actor
GET Jactors/:id retrieves an existing actor
DELETE /actors/:id removes an existing actor

POST /steps creates a new step

GET /steps retrieves the steps’ list
PUT /steps/:id updates an existing step
GET /steps/:id retrieves an existing step
DELETE /steps/:id removes an existing step

POST /asset-items creates a new asset item
GET /asset-items retrieves the asset items’ list
PUT /asset-items/:id updates an existing asset item
GET /asset-items/:id retrieves an existing asset item
DELETE /asset-items/:id removes an existing asset item
POST /asset-items/:id moves an asset item through the SCM
GET /asset-items/track/:id tracks an asset item through the SCM
[Assets [7]
/assets creates a new asset
/assets retrieves the assets’ list
/assets/:id updates an existing asset
/assets/:id retrieves an existing asset

/assets/:id removes an existing asset

/blocks/:number Return the block specified by block number
GET /blocks/hash/:hash Return the block specified by block hash
GET /blocks/tx-id/:tx-id Return the transaction by Transaction ID
GET /transactions:id Return the transaction by 1D

GET /chain Return a blockchain Info object

DATA STRUCTURE

0 String shipmentid

© String rackingNumber H
© ShipmentStatus status defaull = WAITING' ~> Commodity commedity Lo
© Locason tocaton - newiCumer ewOuar °
ol .
'.l o
o String orderid]
© Bosiesn payOnArival
© Double paymentPrice
0 DateTime amvaiDateTime 4--+-33 0 String email
> SupplyChainMember owner
© Strg crderd
© Double cansgrade
/ © Locsaen expectecAnivalLocation © Location newLocation
TransformCommodities : © Boolean payOnArive ; © S¥ing message
ay © DateTime armwzlDateTime. owmer > SupplyChaimMember
3 ! newHoder
t . 4 Dauidle paymerPrice i ¢
H un-diu:l-w»‘ talé type . ".‘“"“,
. > SuaplyChainMemoerduyar ! -3 1B "
- -
o DatsTime dsteReported
I > IS AREL TO AN OBJECT |
© HemStatus temStatus
’ 0 IS THE USE OF AN OBJECT'S STRUCTURE AS A DEFINED TYPE |
© Sting shipmentid
0 String trackingNumber
‘CONCEPT
- -] J— = [esrr)
0 Shipment3tatus siatus TtemStatus ShipmentStatus Address
© Location-location © 800D 0 WATING o Stnng country
© String conditionDescription
o TemperatureReading<<Array>> © DAMAGED 0 PACKING o8
DetectLocationFraud temperatureReadngs optional © CRITICAL 0 DISPATCHING © ltemStatus temStatus N oy
o LocationnewLocation —» supphyChainMember-holder oLOST S s °
ol ocation |-- Sl Productype :CANCELED vy
~> ShipmeniBatch shipment > OrderContract comract ©FOOD
© MEDICINE oLest © StingglobelN
~> Commodity<<Array>> a3setExcharged o MACHINES 0 Adcress address
©OTHERS

Figure C.1 SCM-BP data structure

69

